Qiong Nian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373194/publications.pdf Version: 2024-02-01

Οιονς Νιλη

#	Article	IF	CITATIONS
1	Scalable nanomanufacturing of holey graphene <i>via</i> chemical etching: an investigation into process mechanisms. Nanoscale, 2022, 14, 4762-4769.	5.6	4
2	First-principles study of the impact of chemical doping and functional groups on the absorption spectra of graphene. Semiconductor Science and Technology, 2022, 37, 025013.	2.0	4
3	Nanocrystal Ordering Enhances Thermal Transport and Mechanics in Single-Domain Colloidal Nanocrystal Superlattices. Nano Letters, 2022, 22, 4669-4676.	9.1	6
4	Understanding the mechanism of shockwave induced graphite-to-diamond phase transition. Materialia, 2022, 24, 101487.	2.7	0
5	Limpet Toothâ€Inspired Painless Microneedles Fabricated by Magnetic Fieldâ€Assisted 3D Printing. Advanced Functional Materials, 2021, 31, 2003725.	14.9	54
6	Painless Microneedles: Limpet Toothâ€Inspired Painless Microneedles Fabricated by Magnetic Fieldâ€Assisted 3D Printing (Adv. Funct. Mater. 5/2021). Advanced Functional Materials, 2021, 31, 2170033.	14.9	1
7	3D Printingâ€Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small, 2021, 17, e2100817.	10.0	61
8	Aligned Ti ₃ C ₂ T _{<i>x</i>} MXene for 3D Micropatterning <i>via</i> Additive Manufacturing. ACS Nano, 2021, 15, 12057-12068.	14.6	23
9	Thermal conductivity of metal coated polymer foam: Integrated experimental and modeling study. International Journal of Thermal Sciences, 2021, 169, 107045.	4.9	9
10	Preparation of high-quality graphene oxide-carbon quantum dots composites and their application for electrochemical sensing of uric acid and ascorbic acid. Nanotechnology, 2021, 32, 135501.	2.6	6
11	Understanding mechanical behavior of metallic foam with hollow struts using the hollow pentagonal dodecahedron model. Scripta Materialia, 2020, 182, 114-119.	5.2	10
12	Ligand Crosslinking Boosts Thermal Transport in Colloidal Nanocrystal Solids. Angewandte Chemie - International Edition, 2020, 59, 9556-9563.	13.8	11
13	Scalable and controlled creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties. Carbon, 2020, 161, 880-891.	10.3	27
14	Ligand Crosslinking Boosts Thermal Transport in Colloidal Nanocrystal Solids. Angewandte Chemie, 2020, 132, 9643-9650.	2.0	2
15	Bulk titanium–graphene nanocomposites fabricated by selective laser melting. Journal of Materials Research, 2019, 34, 1744-1753.	2.6	13
16	3D printing graphene-aluminum nanocomposites. Journal of Alloys and Compounds, 2018, 746, 269-276.	5.5	115
17	Ultrafast Laserâ€Shockâ€Induced Confined Metaphase Transformation for Direct Writing of Black Phosphorus Thin Films. Advanced Materials, 2018, 30, 1704405.	21.0	17
18	First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing. Journal of Applied Physics, 2018, 123, .	2.5	19

QIONG NIAN

#	Article	IF	CITATIONS
19	Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties. Composites Part B: Engineering, 2018, 134, 133-140.	12.0	47
20	Comparison of scanning laser annealing and microwave annealing for As+ implanted Si. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 011202.	1.2	1
21	Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Composites Part B: Engineering, 2016, 93, 352-359.	12.0	77
22	Laser sintered graphene nickel nanocomposites. Journal of Materials Processing Technology, 2016, 231, 143-150.	6.3	59
23	Three-dimensional hollow graphene–metallic nanocomposite foam manufactured by polymer-templated electrochemical co-deposition. Journal of Materials Research, 0, , 1.	2.6	0