Priscila Ramos-Ibeas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373147/publications.pdf

Version: 2024-02-01

43 papers

909 citations 471061 17 h-index 28 g-index

46 all docs 46 docs citations

46 times ranked

1460 citing authors

#	Article	IF	CITATIONS
1	Zrsr2 and functional U12-dependent spliceosome are necessary for follicular development. IScience, 2022, 25, 103860.	1.9	3
2	The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes. Animals, 2022, 12, 530.	1.0	1
3	<i>In vitro</i> culture of ovine embryos up to early gastrulating stages. Development (Cambridge), 2022, 149, .	1,2	11
4	Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Reports, 2021, 34, 108735.	2.9	43
5	Impact of Overuse and Sexually Transmitted Infections on Seminal Parameters of Extensively Managed Bulls. Animals, 2021, 11, 827.	1.0	2
6	Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Frontiers in Veterinary Science, 2021, 8, 680539.	0.9	14
7	Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality. International Journal of Molecular Sciences, 2020, 21, 5340.	1.8	49
8	D-Chiro-Inositol Treatment Affects Oocyte and Embryo Quality and Improves Glucose Intolerance in Both Aged Mice and Mouse Models of Polycystic Ovarian Syndrome. International Journal of Molecular Sciences, 2020, 21, 6049.	1.8	7
9	Senescence and Apoptosis During in vitro Embryo Development in a Bovine Model. Frontiers in Cell and Developmental Biology, 2020, 8, 619902.	1.8	33
10	Minor Splicing Factors Zrsr1 and Zrsr2 Are Essential for Early Embryo Development and 2-Cell-Like Conversion. International Journal of Molecular Sciences, 2020, 21, 4115.	1.8	18
11	Embryonic disc formation following post-hatching bovine embryo development in vitro. Reproduction, 2020, 160, 579-589.	1.1	18
12	Sex-Dimorphic Behavioral Alterations and Altered Neurogenesis in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. International Journal of Molecular Sciences, 2019, 20, 3543.	1.8	9
13	Novel Techniques of Sperm Selection for Improving IVF and ICSI Outcomes. Frontiers in Cell and Developmental Biology, 2019, 7, 298.	1.8	73
14	Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nature Communications, 2019, 10, 500.	5.8	91
15	Longitudinal analysis of somatic and germâ€cell telomere dynamics in outbred mice. Molecular Reproduction and Development, 2019, 86, 1033-1043.	1.0	9
16	Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerging Microbes and Infections, 2019, 8, 624-636.	3.0	29
17	Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 2019, 86, 1292-1306.	1.0	52
18	Successful ICSI in Mice Using Caput Epididymal Spermatozoa. Frontiers in Cell and Developmental Biology, 2019, 7, 346.	1.8	12

#	Article	IF	CITATIONS
19	Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Reports, 2018, 23, 143-155.	2.9	33
20	The oviduct: from sperm selection to the epigenetic landscape of the embryoâ€. Biology of Reproduction, 2018, 98, 262-276.	1.2	53
21	Early sex-dependent differences in response to environmental stress. Reproduction, 2018, 155, R39-R51.	1.1	33
22	States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Current Topics in Developmental Biology, 2018, 128, 151-179.	1.0	9
23	Directions and applications of CRISPR technology in livestock research. Animal Reproduction, 2018, 15, 292-300.	0.4	13
24	Experimental Studies on Sperm DNA Fragmentation and Reproductive Outcomes., 2018,, 349-363.		0
25	Pyruvate antioxidant roles in human fibroblasts and embryonic stem cells. Molecular and Cellular Biochemistry, 2017, 429, 137-150.	1.4	40
26	Elimination of methylation marks at lysines 4 and 9 of histone 3 (H3K4 and H3K9) of spermatozoa alters offspring phenotype. Reproduction, Fertility and Development, 2017, 29, 740.	0.1	11
27	Characterisation of the deleted in azoospermia like (Dazl)–green fluorescent protein mouse model generated by a two-step embryonic stem cell-based strategy to identify pluripotent and germ cells. Reproduction, Fertility and Development, 2016, 28, 1741.	0.1	3
28	Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells. Scientific Reports, 2015, 5, 13691.	1.6	18
29	The effect of human follicular fluid on bovine oocyte developmental competence and embryo quality. Reproductive BioMedicine Online, 2015, 30, 203-207.	1.1	20
30	Intracytoplasmic Sperm Injection Using DNA-Fragmented Sperm in Mice Negatively Affects Embryo-Derived Embryonic Stem Cells, Reduces the Fertility of Male Offspring and Induces Heritable Changes in Epialleles. PLoS ONE, 2014, 9, e95625.	1.1	17
31	Potential Health Risks Associated to ICSI: Insights from Animal Models and Strategies for a Safe Procedure. Frontiers in Public Health, 2014, 2, 241.	1.3	20
32	An Efficient System to Establish Biopsy-Derived Trophoblastic Cell Lines from Bovine Embryos1. Biology of Reproduction, 2014, 91, 15.	1.2	20
33	Germâ€cell culture conditions facilitate the production of mouse embryonic stem cells. Molecular Reproduction and Development, 2014, 81, 794-804.	1.0	0
34	Most regions of mouse epididymis are able to phagocytose immature germ cells. Reproduction, 2013, 146, 481-489.	1.1	14
35	The role of prion protein in stem cell regulation. Reproduction, 2013, 146, R91-R99.	1.1	16
36	Sex-specific embryonic origin of postnatal phenotypic variability. Reproduction, Fertility and Development, 2013, 25, 38.	0.1	31

#	Article	IF	CITATIONS
37	250 ALL REGIONS OF THE MOUSE EPIDIDYMIS ARE ABLE TO PHAGOCYTIZE IMMATURE SPERMATOGENIC CELLS. Reproduction, Fertility and Development, 2013, 25, 272.	0.1	О
38	Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 2012, 77, 785-793.	0.9	59
39	Maintenance of Pluripotency in Mouse Stem Cells: Use of Hyaluronan in the Long-Term Culture. Stem Cells and Cancer Stem Cells, 2012, , 123-133.	0.1	1
40	Solving the "X―in Embryos and Stem Cells. Stem Cells and Development, 2012, 21, 1215-1224.	1.1	22
41	A Biopsy-Derived Trophectoderm Cell Line for Bovine Embryo Genotyping Biology of Reproduction, 2012, 87, 554-554.	1.2	O
42	Effects of <i>Zrsr2</i> Mutations in Mice Oogenesis, Peripheral Blood Cells and Muscle Strength. SSRN Electronic Journal, 0, , .	0.4	0
43	Minor Splicing Factors <i>Zrsr1</i> and <i>Zrsr2</i> Essential for Gametogenesis, Early Embryo Development and Conversion of Stem Cells into 2C-Like. SSRN Electronic Journal, 0, , .	0.4	0