Davide Prosperi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological applications of magnetic nanoparticles. Chemical Society Reviews, 2012, 41, 4306.	18.7	1,079
2	Magnetic Glyco-Nanoparticles: A Tool To Detect, Differentiate, and Unlock the Glyco-Codes of Cancer via Magnetic Resonance Imaging. Journal of the American Chemical Society, 2010, 132, 4490-4499.	6.6	240
3	Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2019, 174, 42-55.	2.5	233
4	Digital Detection of Exosomes by Interferometric Imaging. Scientific Reports, 2016, 6, 37246.	1.6	200
5	Intracellular Drug Release from Curcumin-Loaded PLGA Nanoparticles Induces G2/M Block in Breast Cancer Cells. Biomacromolecules, 2013, 14, 672-682.	2.6	136
6	Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 2019, 11, 1855.	1.7	135
7	The emerging role of nanotechnology in skincare. Advances in Colloid and Interface Science, 2021, 293, 102437.	7.0	117
8	Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nature Communications, 2016, 7, 13818.	5.8	115
9	Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. International Journal of Nanomedicine, 2017, Volume 12, 2517-2530.	3.3	108
10	Biotechnological approaches toward nanoparticle biofunctionalization. Trends in Biotechnology, 2014, 32, 11-20.	4.9	107
11	Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in Cancer Cells. Journal of Controlled Release, 2014, 196, 184-196.	4.8	99
12	One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide–alkyne click reaction sequence. Chemical Communications, 2008, , 621-623.	2.2	83
13	A Combinatorial Approach to 2,4,6â€Trisubstituted Triazines with Potent Antimalarial Activity: Combining Conventional Synthesis and Microwaveâ€Assistance. ChemMedChem, 2008, 3, 873-876.	1.6	80
14	Single-Domain Protein A-Engineered Magnetic Nanoparticles: Toward a Universal Strategy to Site-Specific Labeling of Antibodies for Targeted Detection of Tumor Cells. ACS Nano, 2010, 4, 5693-5702.	7.3	77
15	Facile Oxidation of Leucomethylene Blue and Dihydroflavins by Artemisinins: Relationship with Flavoenzyme Function and Antimalarial Mechanism of Action. ChemMedChem, 2010, 5, 1282-1299.	1.6	76
16	Assessing the <i>In Vivo</i> Targeting Efficiency of Multifunctional Nanoconstructs Bearing Antibody-Derived Ligands. ACS Nano, 2013, 7, 6092-6102.	7.3	73
17	H-Ferritin Enriches the Curcumin Uptake and Improves the Therapeutic Efficacy in Triple Negative Breast Cancer Cells. Biomacromolecules, 2017, 18, 3318-3330.	2.6	69
18	Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Seminars in Immunology, 2017, 34, 61-67.	2.7	69

#	Article	IF	CITATIONS
19	HER2 Expression in Breast Cancer Cells Is Downregulated Upon Active Targeting by Antibody-Engineered Multifunctional Nanoparticles in Mice. ACS Nano, 2011, 5, 6383-6393.	7.3	66
20	Site‧pecific Conjugation of ScFvs Antibodies to Nanoparticles by Bioorthogonal Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 496-499.	7.2	66
21	Resolving the Structure of Ligands Bound to the Surface of Superparamagnetic Iron Oxide Nanoparticles by High-Resolution Magic-Angle Spinning NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 12712-12724.	6.6	63
22	HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 2010, 62, 150-165.	3.1	63
23	Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Scientific Reports, 2018, 8, 6563.	1.6	60
24	Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction. Nanomedicine, 2015, 10, 9-23.	1.7	57
25	Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends in Biotechnology, 2019, 37, 995-1010.	4.9	57
26	Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1387-1397.	1.7	56
27	Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. International Journal of Nanomedicine, 2018, Volume 13, 957-973.	3.3	53
28	Protein Oriented Ligation on Nanoparticles Exploiting <i>O</i> ₆ â€Alkylguanineâ€DNA Transferase (SNAP) Genetically Encoded Fusion. Small, 2012, 8, 1492-1497.	5.2	51
29	H-Ferritin-nanocaged olaparib: a promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Scientific Reports, 2017, 7, 7505.	1.6	50
30	Proteinâ€Assisted Oneâ€Pot Synthesis and Biofunctionalization of Spherical Gold Nanoparticles for Selective Targeting of Cancer Cells. Angewandte Chemie - International Edition, 2012, 51, 9272-9275.	7.2	48
31	Loss of exosomes in progranulin-associated frontotemporal dementia. Neurobiology of Aging, 2016, 40, 41-49.	1.5	47
32	Uniform Lipopolysaccharide (LPS)‣oaded Magnetic Nanoparticles for the Investigation of LPS–TLR4 Signaling. Angewandte Chemie - International Edition, 2011, 50, 622-626.	7.2	44
33	Gold nanoparticles decorated by clustered multivalent cone-glycocalixarenes actively improve the targeting efficiency toward cancer cells. Chemical Communications, 2014, 50, 11029.	2.2	43
34	Efficient Synthesis of Unsymmetrical Ureido-Linked Disaccharides. European Journal of Organic Chemistry, 2004, 2004, 395-405.	1.2	41
35	Femtomolar detection of autoantibodies by magnetic relaxation nanosensors. Analytical Biochemistry, 2009, 392, 96-102.	1.1	41
36	Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale, 2011, 3, 387-390.	2.8	41

#	Article	IF	CITATIONS
37	Towards Ideal Magnetofluorescent Nanoparticles for Bimodal Detection of Breastâ€Cancer Cells. Small, 2009, 5, 2555-2564.	5.2	40
38	Nanometronomic treatment of 4T1 breast cancer with nanocaged doxorubicin prevents drug resistance and circumvents cardiotoxicity. Oncotarget, 2017, 8, 8383-8396.	0.8	40
39	Orientationâ€Controlled Conjugation of Haloalkane Dehalogenase Fused Homing Peptides to Multifunctional Nanoparticles for the Specific Recognition of Cancer Cells. Angewandte Chemie - International Edition, 2013, 52, 3121-3125.	7.2	39
40	Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano–Bio Interface Perspective. Advanced Healthcare Materials, 2014, 3, 957-976.	3.9	39
41	Evaluation of gold nanoparticles biocompatibility: a multiparametric study on cultured endothelial cells and macrophages. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	38
42	Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacological Research, 2016, 111, 619-641.	3.1	38
43	Highly efficient production of anti-HER2 scFv antibody variant for targeting breast cancer cells. Applied Microbiology and Biotechnology, 2011, 91, 613-621.	1.7	36
44	Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. Journal of Controlled Release, 2019, 310, 198-208.	4.8	36
45	Multispot, label-free biodetection at a phantom plastic–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9350-9355.	3.3	35
46	Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles. Langmuir, 2016, 32, 7435-7441.	1.6	35
47	Development of ^{99m} Tc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer. International Journal of Nanomedicine, 2017, Volume 12, 3447-3461.	3.3	35
48	Antiproliferative Effect of ASC-J9 Delivered by PLGA Nanoparticles against Estrogen-Dependent Breast Cancer Cells. Molecular Pharmaceutics, 2014, 11, 2864-2875.	2.3	33
49	Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vibrational Spectroscopy, 2013, 68, 45-50.	1.2	32
50	Engineered Ferritin Nanoparticles for the Bioluminescence Tracking of Nanodrug Delivery in Cancer. Small, 2020, 16, e2001450.	5.2	30
51	Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1556-1564.	1.1	29
52	MnO Nanoparticles Embedded in Functional Polymers as <i>T</i> ₁ Contrast Agents for Magnetic Resonance Imaging. ACS Applied Nano Materials, 2020, 3, 3787-3797.	2.4	29
53	A formal synthesis of 3-O-(4-methoxybenzyl)-azidosphingosine by a modified Julia olefination. Tetrahedron, 2002, 58, 4425-4428.	1.0	26
54	Synthesis of mono- and bisglucuronylated carboranes. Tetrahedron: Asymmetry, 2005, 16, 39-44.	1.8	26

#	Article	IF	CITATIONS
55	Novel 4â€Aminoquinolines through Microwaveâ€Assisted S _N Ar Reactions: a Practical Route to Antimalarial Agents. European Journal of Organic Chemistry, 2007, 2007, 6118-6123.	1.2	25
56	Polymer Nanopillar–Gold Arrays as Surface-Enhanced Raman Spectroscopy Substrate for the Simultaneous Detection of Multiple Genes. ACS Nano, 2014, 8, 10496-10506.	7.3	25
57	Synthesis of building blocks of human milk oligosaccharides. Fucosylated derivatives of the lacto- and neolacto-series. Carbohydrate Research, 2002, 337, 1333-1342.	1.1	24
58	One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy. Materials Chemistry and Physics, 2014, 143, 1215-1221.	2.0	24
59	Theranostic Nanocages for Imaging and Photothermal Therapy of Prostate Cancer Cells by Active Targeting of Neuropeptide-Y Receptor. Bioconjugate Chemistry, 2016, 27, 2911-2922.	1.8	24
60	Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia. Journal of Colloid and Interface Science, 2020, 579, 186-194.	5.0	24
61	Phantom Nanoparticles as Probes of Biomolecular Interactions. Small, 2006, 2, 1060-1067.	5.2	22
62	Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles. Journal of Nanobiotechnology, 2017, 15, 14.	4.2	22
63	Curcumin Formulations and Trials: What's New in Neurological Diseases. Molecules, 2020, 25, 5389.	1.7	22
64	Selective Targeting of Cancer-Associated Fibroblasts by Engineered H-Ferritin Nanocages Loaded with Navitoclax. Cells, 2021, 10, 328.	1.8	22
65	Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomaterials Science, 2013, 1, 728.	2.6	21
66	Impact of the strategy adopted for drug loading in nonporous silica nanoparticles on the drug release and cytotoxic activity. Journal of Colloid and Interface Science, 2018, 519, 18-26.	5.0	21
67	Avidin Decorated Core–Shell Nanoparticles for Biorecognition Studies by Elastic Light Scattering. ChemBioChem, 2007, 8, 1021-1028.	1.3	19
68	Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25, 1381-1386.	1.8	19
69	H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB <i>in vitro</i> model for treatment of brain malignancies. Biomaterials Science, 2021, 9, 2032-2042.	2.6	19
70	Boranophosphate Diesters as Stable Synthetic Analogues of 1-O-Glycosylphosphates. Tetrahedron, 2000, 56, 4811-4815.	1.0	18
71	Magnetic peptide nucleic acids for DNA targeting. Chemical Communications, 2009, , 6017.	2.2	18
72	Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	18

#	Article	IF	CITATIONS
73	Light scattered by model phantom bacteria reveals molecular interactions at their surface. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15866-15870.	3.3	17
74	HRMAS NMR analysis in neat ionic liquids: a powerful tool to investigate complex organic molecules and monitor chemical reactions. Green Chemistry, 2007, 9, 216.	4.6	17
75	Innovative approach to safely induce controlled lipolysis by superparamagnetic iron oxide nanoparticles-mediated hyperthermic treatment. International Journal of Biochemistry and Cell Biology, 2017, 93, 62-73.	1.2	17
76	Monitoring the Fate of Orally Administered PLGA Nanoformulation for Local Delivery of Therapeutic Drugs. Pharmaceutics, 2019, 11, 658.	2.0	17
77	Peptide-Nanoparticle Ligation Mediated by <i>Cutinase</i> Fusion for the Development of Cancer Cell-Targeted Nanoconjugates. Bioconjugate Chemistry, 2015, 26, 680-689.	1.8	16
78	<p>Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: an in vitro study</p> . International Journal of Nanomedicine, 2019, Volume 14, 773-785.	3.3	16
79	Self-assembled 4-(1,2-diphenylbut-1-en-1-yl)aniline based nanoparticles: podophyllotoxin and aloin as building blocks. Organic and Biomolecular Chemistry, 2017, 15, 1106-1109.	1.5	15
80	Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca ²⁺ mobilization and the inflammatory activity of dendritic cells. Science Signaling, 2021, 14, .	1.6	15
81	A CONVENIENT MULTIGRAM PREPARATION OF FUNCTIONALIZED 2-AZIDO-2-DEOXY-D-MANNOSE AS A USEFUL ORTHOGONALLY PROTECTED BUILDING BLOCK FOR OLIGOSACCHARIDE SYNTHESIS. Journal of Carbohydrate Chemistry, 2001, 20, 813-819.	0.4	14
82	Chemoenzymatic stereoconvergent synthesis of 3-O-benzoyl azidosphingosine. Tetrahedron: Asymmetry, 2002, 13, 867-872.	1.8	14
83	One-pot phase transfer and surface modification of CdSe–ZnS quantum dots using a synthetic functional copolymer. Chemical Communications, 2014, 50, 240-242.	2.2	14
84	Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology, 2017, 11, 534-545.	1.6	14
85	Heteronanoparticles by Self-Assembly of Ecdysteroid and Doxorubicin Conjugates To Overcome Cancer Resistance. ACS Medicinal Chemistry Letters, 2018, 9, 468-471.	1.3	14
86	Half-Chain Cetuximab Nanoconjugates Allow Multitarget Therapy of Triple Negative Breast Cancer. Bioconjugate Chemistry, 2018, 29, 3817-3832.	1.8	14
87	99mTc-Radiolabeled Silica Nanocarriers for Targeted Detection and Treatment of HER2-Positive Breast Cancer. International Journal of Nanomedicine, 2021, Volume 16, 1943-1960.	3.3	14
88	Synthesis of Novel Pseudodisaccharides and Neoglycoconjugates Containing anN-Glycosyl Carbamate Backbone. Synlett, 2004, 2004, 1529-1532.	1.0	13
89	Full-Length Recombinant hSP-D Binds and Inhibits SARS-CoV-2. Biomolecules, 2021, 11, 1114.	1.8	13
90	Immobilization of carboxypeptidase from Sulfolobus solfataricuson magnetic nanoparticles improves enzyme stability and functionality in organic media. BMC Biotechnology, 2014, 14, 82.	1.7	12

#	Article	IF	CITATIONS
91	Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	12
92	Does conjugation strategy matter? Cetuximab-conjugated gold nanocages for targeting triple-negative breast cancer cells. Nanoscale Advances, 2019, 1, 3626-3638.	2.2	12
93	Co-administration of H-ferritin-doxorubicin and Trastuzumab in neoadjuvant setting improves efficacy and prevents cardiotoxicity in HER2 + murine breast cancer model. Scientific Reports, 2020, 10, 11425.	1.6	12
94	Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. International Journal of Biological Macromolecules, 2020, 154, 206-216.	3.6	12
95	Multiple Presentation of Scfv800E6 on Silica Nanospheres Enhances Targeting Efficiency Toward HER-2 Receptor in Breast Cancer Cells. Bioconjugate Chemistry, 2011, 22, 2296-2303.	1.8	11
96	Combined mass quantitation and phenotyping of intact extracellular vesicles by a microarray platform. Analytica Chimica Acta, 2016, 902, 160-167.	2.6	11
97	Nano-targeting of mucosal addressin cell adhesion molecule-1 identifies bowel inflammation foci in murine model. Nanomedicine, 2017, 12, 1547-1560.	1.7	11
98	<p>Anti-MAdCAM-1-Conjugated Nanocarriers Delivering Quantum Dots Enable Specific Imaging of Inflammatory Bowel Disease</p> . International Journal of Nanomedicine, 2020, Volume 15, 8537-8552.	3.3	10
99	A fast and straightforward procedure for vault nanoparticle purification and the characterization of its endocytic uptake. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2254-2260.	1.1	8
100	Are nanotechnological approaches the future of treating inflammatory diseases?. Nanomedicine, 2019, 14, 2379-2390.	1.7	8
101	Functionalization of colloidal nanoparticles with a discrete number of ligands based on a "HALO-bioclick―reaction. Chemical Communications, 2020, 56, 11398-11401.	2.2	8
102	Development of an Effective Tumor-Targeted Contrast Agent for Magnetic Resonance Imaging Based on Mn/H-Ferritin Nanocomplexes. ACS Applied Bio Materials, 2021, 4, 7800-7810.	2.3	8
103	Magnetofluorescent nanoparticles for bimodal detection of breast cancer cells. , 2010, , .		7
104	Towards a Universal Method for the Stable and Clean Functionalization of Inert Perfluoropolymer Nanoparticles: Exploiting Photopolymerizable Amphiphilic Diacetylenes. Advanced Functional Materials, 2010, 20, 3932-3940.	7.8	7
105	Nanoparticleâ€Mediated Suicide Gene Therapy for Triple Negative Breast Cancer Treatment. Advanced Therapeutics, 2020, 3, 2000007.	1.6	7
106	Impact of Tuning the Surface Charge Distribution on Colloidal Iron Oxide Nanoparticle Toxicity Investigated in Caenorhabditis elegans. Nanomaterials, 2021, 11, 1551.	1.9	7
107	Synthesis of Novel Carborane-hybrids Based on a Triazine Scaffold for Boron Neutron Capture Therapy. Synlett, 2004, 2004, 1007-1010.	1.0	6
108	Nanoparticles: "magic bullets―for targeting the immune system. Seminars in Immunology, 2017, 34, 1-2.	2.7	6

#	Article	IF	CITATIONS
109	Modeling the interaction of amphiphilic polymer nanoparticles with biomembranes to Guide rational design of drug delivery systems. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111366.	2.5	6
110	New Tetracyclic Colchicinoids from the Reaction of N-Deacetylthiocolchicine and N-Deacetylcolchicine with Nitrous Acid and tert-Butyl Nitrite. Helvetica Chimica Acta, 2003, 86, 2082-2089.	1.0	5
111	Polyhydroxylated Bicyclic Ureas from Glycosyl Isocyanides. Synlett, 2006, 2006, 0786-0788.	1.0	5
112	â¿¿Blindâ¿¿ targeting in action: From phage display to breast cancer cell targeting with peptide-gold nanoconjugates. Pharmacological Research, 2016, 111, 155-162.	3.1	5
113	Bioengineered Approaches for Site Orientation of Peptide-Based Ligands of Nanomaterials. , 2018, , 139-169.		5
114	Attempted Oxidative Deamination ofN-Deacetylcolchicinoids with 3,5-Di(tert-butyl)-1,2-benzoquinone: Synthesis of 2H-1,4-Benzoxazine-Type Adducts. Helvetica Chimica Acta, 1999, 82, 1502-1508.	1.0	4
115	Improvement of the Synthesis of Immunological Carbohydrate Vaccines Containing the Tumour Associate Antigen CaMBr1. European Journal of Organic Chemistry, 2001, 2001, 4331.	1.2	4
116	Dispersed Phantom Scatterer Technique Reveals Subtle Differences in Substrate Recognition by Phospholipase D Inactive Mutants. ChemBioChem, 2009, 10, 639-644.	1.3	4
117	Loading Imatinib inside targeted nanoparticles to prevent Bronchiolitis Obliterans Syndrome. Scientific Reports, 2020, 10, 20726.	1.6	4
118	Relaxometric Studies of Gd-Chelate Conjugated on the Surface of Differently Shaped Gold Nanoparticles. Nanomaterials, 2020, 10, 1115.	1.9	4
119	Enzymatic galactosylation of C-glycosides analogues en route to C-glycopeptides. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 343-348.	1.8	3
120	Suicide Gene Therapy: A New Frontier for Cancer Fighting. Current Pharmaceutical Biotechnology, 2019, 20, 2-4.	0.9	3
121	Frontiers in Cancer Immunotherapy: Understanding the Role of Gut Microbiota. Current Pharmaceutical Biotechnology, 2020, 21, 2-2.	0.9	3
122	The Synthesis of Allolactose from Amygdalin. Journal of Carbohydrate Chemistry, 2003, 22, 267-274.	0.4	2
123	An Efficient Transformation of (-)-Quinic Acid into Carba-l-rhamnose. Synlett, 2004, 2004, 2529-2532.	1.0	2
124	Strategies for the Characterization of the Saccharidic Moiety in Composite Nanoparticles. ACS Symposium Series, 2011, , 69-89.	0.5	2
125	Targeted delivery of nanoparticles. Frontiers of Nanoscience, 2020, 16, 253-264.	0.3	2
126	Stem Cell-Mediated Exon Skipping of the Dystrophin Gene by the Bystander Effect. Current Gene Therapy, 2015, 15, 563-571.	0.9	2

#	Article	IF	CITATIONS
127	Boron Chemistry. , 2012, , 77-98.		1
128	O ₆ -alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
129	Novel Antibody-Engineered Gold Nanoparticles as Targeted Drug Delivery for Primary Mesenchimal Cells Do Not Elicit an Inflammatory Response. Journal of Heart and Lung Transplantation, 2014, 33, S166.	0.3	1
130	Is bigger still better? Walking on the trail of cancer nanomedicine. Pharmacological Research, 2017, 119, 149-152.	3.1	1
131	Nanodiagnostics: Small 22/2009. Small, 2009, 5, NA-NA.	5.2	Ο
132	Molecular nanoclinics: Dream or reality?. Pharmacological Research, 2010, 62, 55-56.	3.1	0
133	Novel biotinylated bile acid amphiphiles: Micellar aggregates formation and interaction with hepatocytes. Organic and Biomolecular Chemistry, 2011, 9, 2899.	1.5	0
134	Detection of biomolecules using light scattering. , 2011, , .		0
135	Rücktitelbild: Protein-Assisted One-Pot Synthesis and Biofunctionalization of Spherical Gold Nanoparticles for Selective Targeting of Cancer Cells (Angew. Chem. 37/2012). Angewandte Chemie, 2012, 124, 9592-9592.	1.6	0
136	An Innovative Approach to Selectively Inhibit Mesenchymal Cells Isolated from BOS Patients. Journal of Heart and Lung Transplantation, 2013, 32, S82.	0.3	0
137	Star-like gold nanoparticles as highly active substrate for surface enhanced Raman spectroscopy. , 2013, , .		0
138	Gold nanocages for imaging and therapy of prostate cancer cells. Proceedings of SPIE, 2016, , .	0.8	0
139	OP0022â€Targeting Fibroblastoid-like Cells by Drug Loaded Engineered Gold Nanoparticles as A Novel Approach for ILD-SSC Treatment. Annals of the Rheumatic Diseases, 2016, 75, 61.1-61.	0.5	Ο
140	Correction: Self-assembled 4-(1,2-diphenylbut-1-en-1-yl)aniline based nanoparticles: podophyllotoxin and aloin as building blocks. Organic and Biomolecular Chemistry, 2017, 15, 1725-1725.	1.5	0
141	Meet Our Editor-in-Chief. Current Pharmaceutical Biotechnology, 2017, 18, .	0.9	0
142	Preface: A New Era of Nanoimmunology. Current Pharmaceutical Biotechnology, 2018, 19, 2-4.	0.9	0
143	Development of a New Local Therapeutic Approach for BOS: Efficacy of Imatinib Loaded -antiCD44 Coated Gold Nanoparticles In Vitro and In Vivo. Journal of Heart and Lung Transplantation, 2019, 38, S138-S139.	0.3	0
144	Evaluation of TFR-1 Expression in Feline Mammary Cancer and In Vitro Antitumor Efficacy Study of Doxorubicin-Loaded H-Ferritin Nanocages. Cancers, 2021, 13, 1248.	1.7	0

#	Article	IF	CITATIONS
145	Engineered gold nanoparticles targeted to mesenchymal cells from BOS patients can be safely administered to normal mice by inhalation. , 2015, , .		Ο
146	Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: In-vitro study. , 2015, , .		0
147	Efficacy of functionalized-imatinib loaded gold nanoparticles on lung fibroblastoid cells from systemic sclerosis patients. , 2016, , .		Ο
148	Abstract P6-12-17: H-ferritin allows nanometronomic treatment of breast cancer with doxorubicin preventing drug resistance and circumventing cardiotoxicity. , 2017, , .		0
149	Metronomic Nanocaged Doxorubicin Prevents Chemoresistance and Cardiotoxicity in Breast Cancer. , $0,$, .		Ο
150	SAT0315â€Imatinib-loaded targeted gold nanoparticles ameliorate experimental lung fibrosis induced by bleomycin. , 2017, , .		0
151	Bioengineered nanoparticles targeted to mesenchymal cells from patients with BOS exert anti-inflammatory activity. , 2017, , .		Ο
152	Imatinib-loaded gold nanoparticles ameliorate experimental lung fibrosis induced by bleomycin. , 2017, , ,		0
153	Olaparib Nanoformulation in H-Ferritin for the Triple Negative Breast Cancer Treatment. , 0, , .		0
154	MAdCAM-1 Nanotargeting Uncovers Bowel Inflammation Foci in Experimental Model of Colitis. , 0, , .		0
155	The antifibrotic effect of Imatinib loaded CD44 targeted gold nanoparticles (Im-CD44-GNP) relies on alveolar macrophage regulation. , 2018, , .		0
156	Cetuximab-Conjugates Nanoparticles for the Treatment of Triple Negative Breast Cancer. , 0, , .		0
157	Half-Chain Trastuzumab Nanoconjugates Enhance Antitumor Activity in HER2+ breast cancer. , 0, , .		Ο
158	Efficacy of imatinib loaded-antiCD44 coated gold nanoparticles: a possible new therapeutic approach to BOS. , 2019, , .		0