
Anthony J Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9373113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen bonding and biological specificity analysed by protein engineering. Nature, 1985, 314, 235-238.	13.7	1,143
2	AAA+superfamily ATPases: common structure-diverse function. Genes To Cells, 2001, 6, 575-597.	0.5	864
3	Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in <i>Bacillus subtilis</i> . Science, 2012, 335, 1103-1106.	6.0	809
4	The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell, 1984, 38, 835-840.	13.5	604
5	Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature, 1982, 299, 756-758.	13.7	342
6	Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation. Biochemistry, 1983, 22, 3581-3586.	1.2	296
7	N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature, 2010, 464, 728-732.	13.7	272
8	Global Network Reorganization During Dynamic Adaptations of <i>Bacillus subtilis</i> Metabolism. Science, 2012, 335, 1099-1103.	6.0	255
9	Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. Journal of Structural Biology, 2004, 146, 106-112.	1.3	233
10	Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nature Communications, 2014, 5, 4919.	5.8	199
11	Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nature Chemistry, 2014, 6, 112-121.	6.6	196
12	Dissecting the Role of a Conserved Motif (the Second Region of Homology) in the AAA Family of ATPases. Journal of Biological Chemistry, 1999, 274, 26225-26232.	1.6	179
13	A large increase in enzyme–substrate affinity by protein engineering. Nature, 1984, 307, 187-188.	13.7	154
14	Structural Factors Governing Hemin Dissociation from Metmyoglobin. Biochemistry, 1996, 35, 11300-11309.	1.2	150
15	Phosphorylated aspartate in the structure of a response regulator protein 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 294, 9-15.	2.0	150
16	Stability of Myoglobin: A Model for the Folding of Heme Proteins. Biochemistry, 1994, 33, 11767-11775.	1.2	139
17	The Crystal Structure of the AAA Domain of the ATP-Dependent Protease FtsH of Escherichia coli at 1.5 à Resolution. Structure, 2002, 10, 1073-1083.	1.6	127
18	Protein engineering 20 years on. Nature Reviews Molecular Cell Biology, 2002, 3, 964-970.	16.1	123

#	Article	IF	CITATIONS
19	The role of water in sequence-independent ligand binding by an oligopeptide transporter protein. Nature Structural Biology, 1996, 3, 998-1001.	9.7	119
20	The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochemical Society Transactions, 2015, 43, 1011-1017.	1.6	115
21	The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. Structure, 1997, 5, 1017-1032.	1.6	111
22	Lipid spirals in <i>Bacillus subtilis</i> and their role in cell division. Molecular Microbiology, 2008, 68, 1315-1327.	1.2	110
23	Peptide Binding in OppA, the Crystal Structures of the Periplasmic Oligopeptide Binding Protein in the Unliganded Form and in Complex with Lysyllysineâ€,‡. Biochemistry, 1997, 36, 9747-9758.	1.2	99
24	An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. Journal of Molecular Biology, 1998, 283, 907-912.	2.0	99
25	N-Myristoyltransferase from Leishmania donovani: Structural and Functional Characterisation of a Potential Drug Target for Visceral Leishmaniasis. Journal of Molecular Biology, 2010, 396, 985-999.	2.0	98
26	Analysis of Enzyme Structure and Activity by Protein Engineering. Angewandte Chemie International Edition in English, 1984, 23, 467-473.	4.4	96
27	Probing histidine-substrate interactions in tyrosyl-tRNA synthetase using asparagine and glutamine replacements. Biochemistry, 1985, 24, 5106-5109.	1.2	96
28	Tetramerization and interdomain flexibility of the replication initiation controller YabA enables simultaneous binding to multiple partners. Nucleic Acids Research, 2016, 44, 449-463.	6.5	96
29	Fragment-derived inhibitors of human N-myristoyltransferase block capsid assembly and replication of the common cold virus. Nature Chemistry, 2018, 10, 599-606.	6.6	96
30	Distal pocket polarity in ligand binding to myoglobin: structural and functional characterization of a threonine68 (E11) mutant. Biochemistry, 1991, 30, 6252-6260.	1.2	94
31	The crystal structures of the oligopeptide-binding protein OppA complexed with tripeptide and tetrapeptide ligands. Structure, 1995, 3, 1395-1406.	1.6	91
32	Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. Journal of Molecular Biology, 2001, 306, 759-771.	2.0	90
33	The Crystal Structures of Human S100A12 in Apo Form and in Complex with Zinc: New Insights into S100A12 Oligomerisation. Journal of Molecular Biology, 2009, 391, 536-551.	2.0	90
34	Serine92 (F7) contributes to the control of heme reactivity and stability in myoglobin. Biochemistry, 1993, 32, 5132-5138.	1.2	85
35	Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends in Cell Biology, 2006, 16, 229-233.	3.6	84
36	The Structure of CodY, a GTP- and Isoleucine-responsive Regulator of Stationary Phase and Virulence in Gram-positive Bacteria. Journal of Biological Chemistry, 2006, 281, 11366-11373.	1.6	82

#	Article	IF	CITATIONS
37	The Crystal Structure of Gankyrin, an Oncoprotein Found in Complexes with Cyclin-dependent Kinase 4, a 19 S Proteasomal ATPase Regulator, and the Tumor Suppressors Rb and p53. Journal of Biological Chemistry, 2004, 279, 1541-1545.	1.6	81
38	dUTPase as a Platform for Antimalarial Drug Design: Structural Basis for the Selectivity of a Class of Nucleoside Inhibitors. Structure, 2005, 13, 329-338.	1.6	81
39	Conservation of Structure and Mechanism in Primary and Secondary Transporters Exemplified by SiaP, a Sialic Acid Binding Virulence Factor from Haemophilus influenzae. Journal of Biological Chemistry, 2006, 281, 22212-22222.	1.6	81
40	Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs. PLoS Neglected Tropical Diseases, 2012, 6, e1625.	1.3	79
41	Distal pocket polarity in ligand binding to myoglobin: Deoxy and carbonmonoxy forms of a threonine68(E11) mutant investigated by x-ray crystallography and infrared spectroscopy. Biochemistry, 1993, 32, 13061-13070.	1.2	74
42	Contributions of residue 45(CD3) and heme-6-propionate to the bimolecular and geminate recombination reactions of myoglobin. Biochemistry, 1991, 30, 4697-4705.	1.2	72
43	An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein. Molecular Microbiology, 2005, 57, 143-155.	1.2	72
44	A fluorescence-based assay for N-myristoyltransferase activity. Analytical Biochemistry, 2012, 421, 342-344.	1.1	69
45	Dimer formation and transcription activation in the sporulation response regulator SpoOA. Journal of Molecular Biology, 2002, 316, 235-245.	2.0	68
46	Domain swapping in the sporulation response regulator SpoOA. Journal of Molecular Biology, 2000, 297, 757-770.	2.0	67
47	Mechanism of Hydrogen Cyanide Binding to Myoglobin. Biochemistry, 1996, 35, 7107-7113.	1.2	66
48	The Structure of the Oligopeptide-binding Protein, AppA, from Bacillus subtilis in Complex with a Nonapeptide. Journal of Molecular Biology, 2005, 345, 879-892.	2.0	66
49	Discovery of Plasmodium vivax <i>N</i> -Myristoyltransferase Inhibitors: Screening, Synthesis, and Structural Characterization of their Binding Mode. Journal of Medicinal Chemistry, 2012, 55, 3578-3582.	2.9	65
50	Expression of HIV-1 gp120 and Human Soluble CD4 by Recombinant Baculoviruses and their Interaction In Vitro. AIDS Research and Human Retroviruses, 1990, 6, 765-773.	0.5	64
51	Alteration of Axial Coordination by Protein Engineering in Myoglobin. Journal of Biological Chemistry, 1995, 270, 15993-16001.	1.6	63
52	Design and Synthesis of High Affinity Inhibitors of <i>Plasmodium falciparum</i> and <i>Plasmodium vivax N</i> -Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP). Journal of Medicinal Chemistry, 2014, 57, 2773-2788.	2.9	63
53	Higher-throughput approaches to crystallization and crystal structure determination. Biochemical Society Transactions, 2008, 36, 771-775.	1.6	59
54	Discovery of Novel and Ligand-Efficient Inhibitors of Plasmodium falciparum and Plasmodium vivax <i>N</i> -Myristoyltransferase. Journal of Medicinal Chemistry, 2013, 56, 371-375.	2.9	58

#	Article	IF	CITATIONS
55	Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes, 2017, 8, 22.	1.0	58
56	pBaSysBioll: an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis. Microbiology (United Kingdom), 2010, 156, 1600-1608.	0.7	56
57	Design and Synthesis of Inhibitors of <i>Plasmodium falciparumN</i> -Myristoyltransferase, A Promising Target for Antimalarial Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 8879-8890.	2.9	56
58	Structure-Based Design of Potent and Selective <i>Leishmania N</i> -Myristoyltransferase Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 8664-8670.	2.9	56
59	Residues in the Distal Heme Pocket of Neuroglobin. Journal of Biological Chemistry, 2004, 279, 5886-5893.	1.6	55
60	Division site recognition inEscherichia coliandBacillus subtilis. FEMS Microbiology Reviews, 2007, 31, 311-326.	3.9	55
61	Structure of components of an intercellular channel complex in sporulating <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5441-5445.	3.3	54
62	Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis. Molecular Microbiology, 2001, 39, 890-903.	1.2	53
63	An [{Fe(mecam)}2]6â^' Bridge in the Crystal Structure of a Ferric Enterobactin Binding Protein. Angewandte Chemie - International Edition, 2006, 45, 5132-5136.	7.2	51
64	The Crystal Structure of YloQ, a Circularly Permuted GTPase Essential for Bacillus subtilis Viability. Journal of Molecular Biology, 2004, 340, 767-782.	2.0	50
65	Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Molecular Microbiology, 2006, 61, 948-959.	1.2	48
66	Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2005, 62, 297-301.	1.5	47
67	Tension in haemoglobin revealed by Fe-His(F8) bond rupture in the fully liganded T-state. Journal of Molecular Biology, 1997, 271, 161-167.	2.0	45
68	Structural Basis of the Sulphate Starvation Response in E. coli: Crystal Structure and Mutational Analysis of the Cofactor-binding Domain of the Cbl Transcriptional Regulator. Journal of Molecular Biology, 2006, 364, 309-322.	2.0	45
69	Structure of the catalytic domain of the human mitochondrial Lon protease: Proposed relation of oligomer formation and activity. Protein Science, 2010, 19, 987-999.	3.1	45
70	Fine structure-activity analysis of mutations at position 51 of tyrosyl-tRNA synthetase. Biochemistry, 1985, 24, 5858-5861.	1.2	43
71	Reduction in CD4 binding affinity associated with removal of a single glycosylation site in the external glycoprotein of HIV-2. Virology, 1991, 180, 853-856.	1.1	43
72	Genetic and Biochemical Analysis of the Interaction of <i>Bacillus subtilis</i> CodY with Branched-Chain Amino Acids. Journal of Bacteriology, 2009, 191, 6865-6876.	1.0	42

#	Article	IF	CITATIONS
73	Crystallisation of the Bacillus subtilis sporulation inhibitor SinR, complexed with its antagonist, Sinl. FEBS Letters, 1996, 378, 98-100.	1.3	41
74	Interactions among residues CD3, E7, E10, and E11 in myoglobins: Attempts to simulate the ligand-binding properties of Aplysia myoglobin. Biochemistry, 1995, 34, 8715-8725.	1.2	40
75	The trans-activation domain of the sporulation response regulator Spo0A revealed by X-ray crystallography. Molecular Microbiology, 2000, 38, 198-212.	1.2	40
76	Structural basis for the efficient phosphorylation of AZT-MP (3′-azido-3′-deoxythymidine) Tj ETQq0 0 0 rgBT Journal, 2010, 428, 499-509.	/Overlock 1.7	2 10 Tf 50 62 38
77	Structure and interactions of the <scp><i>B</i></scp> <i>acillus subtilis</i> sporulation inhibitor of <scp>DNA</scp> replication, <scp>SirA</scp> , with domain <scp>I</scp> of <scp>DnaA</scp> . Molecular Microbiology, 2014, 93, 975-991.	1.2	38
78	Diverse modes of binding in structures of <i>Leishmania majorN</i> -myristoyltransferase with selective inhibitors. IUCrJ, 2014, 1, 250-260.	1.0	38
79	Structural Rearrangement Accompanying Ligand Binding in the GAF Domain of CodY from Bacillus subtilis. Journal of Molecular Biology, 2009, 390, 1007-1018.	2.0	37
80	Structure and Organisation of SinR, the Master Regulator of Biofilm Formation in Bacillus subtilis. Journal of Molecular Biology, 2011, 411, 597-613.	2.0	37
81	The Spore Coat Protein CotE Facilitates Host Colonization by Clostridium difficile. Journal of Infectious Diseases, 2017, 216, 1452-1459.	1.9	37
82	Oligomerization of the Bacillus subtilis division protein DivIVA. Microbiology (United Kingdom), 2002, 148, 807-813.	0.7	37
83	Structure of the Bacillus Cell Fate Determinant SpoIIAA in Phosphorylated and Unphosphorylated Forms. Structure, 2001, 9, 605-614.	1.6	36
84	Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiology Letters, 2011, 325, 92-98.	0.7	36
85	Stabilizing Bound O2in Myoglobin by Valine68(E11) to Asparagine Substitutionâ€,‡. Biochemistry, 1998, 37, 15896-15907.	1.2	35
86	Crystallographic and Solution Studies ofN-Lithocholyl Insulin:Â A New Generation of Prolonged-Acting Human Insulinsâ€. Biochemistry, 2004, 43, 5987-5995.	1.2	34
87	Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology (United Kingdom), 2010, 156, 3532-3543.	0.7	34
88	Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. Journal of Biological Chemistry, 2017, 292, 2714-2728.	1.6	34
89	Compensating Stereochemical Changes Allow Murein Tripeptide to Be Accommodated in a Conventional Peptide-binding Protein. Journal of Biological Chemistry, 2011, 286, 31512-31521.	1.6	33
90	Site-selective C–C modification of proteins at neutral pH using organocatalyst-mediated cross aldol ligations. Chemical Science, 2018, 9, 5585-5593.	3.7	33

#	Article	IF	CITATIONS
91	High-resolution x-ray structures of pig metmyoglobin and two CD3 mutants: Mb(Lys45 .fwdarw. Arg) and Mb(Lys45 .fwdarw. Ser). Biochemistry, 1992, 31, 8732-8739.	1.2	31
92	A Bacterial Virulence Factor with a Dual Role as an Adhesin and a Solute-binding Protein: The Crystal Structure at 1.5ÂÃ Resolution of the PEB1a Protein from the Food-borne Human Pathogen Campylobacter jejuni. Journal of Molecular Biology, 2007, 372, 160-171.	2.0	31
93	The crystal structures of macrophage migration inhibitory factor from <i>Plasmodium falciparum</i> and <i>Plasmodium berghei</i> . Protein Science, 2009, 18, 2578-2591.	3.1	30
94	Peptidomimetic inhibitors of <i>N</i> -myristoyltransferase from human malaria and leishmaniasis parasites. Organic and Biomolecular Chemistry, 2014, 12, 8132-8137.	1.5	30
95	Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. MedChemComm, 2015, 6, 1761-1766.	3.5	30
96	Where asymmetry in gene expression originates. Molecular Microbiology, 2005, 57, 611-620.	1.2	29
97	Structures ofPlasmodium falciparumpurine nucleoside phosphorylase complexed with sulfate and its natural substrate inosine. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1245-1254.	2.5	29
98	A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. ELife, 2017, 6, .	2.8	28
99	Functional Role for a Conserved Aspartate in the Spo0E Signature Motif Involved in the Dephosphorylation of the Bacillus subtilis Sporulation Regulator Spo0A. Journal of Biological Chemistry, 2008, 283, 2962-2972.	1.6	27
100	Structure and nonâ€essential function of glycerol kinase in <i>Plasmodium falciparum</i> blood stages. Molecular Microbiology, 2009, 71, 533-545.	1.2	27
101	Structure of the Phosphatase Domain of the Cell Fate Determinant SpollE from Bacillus subtilis. Journal of Molecular Biology, 2012, 415, 343-358.	2.0	27
102	Mucosal Antibodies to the C Terminus of Toxin A Prevent Colonization of Clostridium difficile. Infection and Immunity, 2017, 85, .	1.0	27
103	The crystal structure of superoxide dismutase from Plasmodium falciparum. BMC Structural Biology, 2006, 6, 20.	2.3	26
104	Apomyoglobin as a molecular recognition surface: expression, reconstitution and crystallization of recombinant porcine myoglobin in Escherichia coli. Protein Engineering, Design and Selection, 1988, 2, 233-237.	1.0	25
105	Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 293, 997-1004.	2.0	25
106	The response regulator Spo0A from Bacillus subtilis is efficiently phosphorylated in Escherichia coli. FEMS Microbiology Letters, 2003, 223, 153-157.	0.7	25
107	Dimer-induced signal propagation in SpoOA. Molecular Microbiology, 2004, 53, 829-842.	1.2	24
108	Application of high-throughput technologies to a structural proteomics-type analysis ofBacillus anthracis. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1267-1275.	2.5	24

#	Article	IF	CITATIONS
109	Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PLoS ONE, 2019, 14, e0206896.	1.1	24
110	CRYSTAL STRUCTURES OF PERIPLASMIC SOLUTE-BINDING PROTEINS IN ABC TRANSPORT COMPLEXES ILLUMINATE THEIR FUNCTION. , 2003, , 187-207.		23
111	EARLY FLOWERING3 sub-nuclear localization responds to changes in ambient temperature. Plant Physiology, 2021, 187, 2352-2355.	2.3	21
112	Engineering a Ligand Binding Pocket into a Four-Helix Bundle Protein Cytochromeb562. Journal of the American Chemical Society, 2001, 123, 512-513.	6.6	19
113	The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis. Molecular Genetics and Genomics, 2006, 275, 409-420.	1.0	19
114	Crystallization of the GTP-dependent transcriptional regulator CodY fromBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 155-157.	2.5	17
115	Structure of the virulence-associated protein VapD from the intracellular pathogen <i>Rhodococcus equi</i> . Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2139-2151.	2.5	17
116	The <i>Rhodococcus equi</i> virulence protein VapA disrupts endolysosome function and stimulates lysosome biogenesis. MicrobiologyOpen, 2017, 6, e00416.	1.2	17
117	An oscillating Min system in Bacillus subtilis influences asymmetrical septation during sporulation. Microbiology (United Kingdom), 2012, 158, 1972-1981.	0.7	17
118	Morphogenic Protein RodZ Interacts with Sporulation Specific SpollE in Bacillus subtilis. PLoS ONE, 2016, 11, e0159076.	1.1	17
119	Raman and CD Spectroscopy of Recombinant 68-kDa DNA Human Topoisomerase I and Its Complex with Suicide DNAâ^'Substrateâ€. Biochemistry, 1998, 37, 14630-14642.	1.2	16
120	Cysteine Thiolate Coordination in the Ferrous CO Complex of an Engineered Cytochromeb562. Journal of the American Chemical Society, 2001, 123, 2458-2459.	6.6	16
121	Structure of purine nucleoside phosphorylase (DeoD) fromBacillus anthracis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 459-462.	0.7	16
122	The molecular basis of thioalcohol production in human body odour. Scientific Reports, 2020, 10, 12500.	1.6	16
123	Novel Thienopyrimidine Inhibitors of <i>Leishmania N</i> -Myristoyltransferase with On-Target Activity in Intracellular Amastigotes. Journal of Medicinal Chemistry, 2020, 63, 7740-7765.	2.9	15
124	Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathogens, 2020, 16, e1008784.	2.1	15
125	A new mutation inspo0Awith intragenic suppressors in the effector domain. FEMS Microbiology Letters, 2000, 185, 123-128.	0.7	14
126	Structural Characterization of Spo0E-like Protein-aspartic Acid Phosphatases That Regulate Sporulation in Bacilli. Journal of Biological Chemistry, 2006, 281, 37993-38003.	1.6	14

#	Article	IF	CITATIONS
127	Structural characterisation of the virulence-associated protein VapG from the horse pathogen Rhodococcus equi. Veterinary Microbiology, 2015, 179, 42-52.	0.8	14
128	Structure-guided optimization of quinoline inhibitors of Plasmodium N-myristoyltransferase. MedChemComm, 2017, 8, 191-197.	3.5	14
129	Inversion of Axial Coordination in Myoglobin to Create a "Proximal―Ligand Binding Pocketâ€. Biochemistry, 2003, 42, 10191-10199.	1.2	13
130	Discovery of pyridyl-based inhibitors of Plasmodium falciparum N-myristoyltransferase. MedChemComm, 2015, 6, 1767-1772.	3.5	13
131	Crystallization of the periplasmic oligopeptide-binding protein of Salmonella typhimurium. Journal of Molecular Biology, 1988, 204, 493-494.	2.0	12
132	Crystallization of gankyrin, an oncoprotein that interacts with CDK4 and the S6b (rpt3) ATPase of the 19S regulator of the 26S proteasome. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1294-1295.	2.5	12
133	Crystal structure of PurE (BA0288) from Bacillus anthracis at 1.8 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2005, 61, 674-676.	1.5	12
134	The Structure and Interactions of SpoIISA and SpoIISB, a Toxin-Antitoxin System in Bacillus subtilis. Journal of Biological Chemistry, 2011, 286, 6808-6819.	1.6	12
135	MpaA is a murein-tripeptide-specific zinc carboxypeptidase that functions as part of a catabolic pathway for peptidoglycan-derived peptides in Î ³ -proteobacteria. Biochemical Journal, 2012, 448, 329-341.	1.7	12
136	Accommodating structurally diverse peptides in proteins. Chemistry and Biology, 1996, 3, 519-524.	6.2	11
137	Expression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen. Protein Engineering, Design and Selection, 2010, 23, 817-825.	1.0	10
138	Crystal and Solution Studies Reveal That the Transcriptional Regulator AcnR of Corynebacterium glutamicum Is Regulated by Citrate-Mg2+ Binding to a Non-canonical Pocket. Journal of Biological Chemistry, 2013, 288, 15800-15812.	1.6	10
139	Structure mediation in substrate binding and postâ€translational processing of penicillin acylases: Information from mutant structures of <scp><i>K</i></scp> <i>luyvera citrophila</i> penicillin <scp>G</scp> acylase. Protein Science, 2015, 24, 1660-1670.	3.1	10
140	Crystal structure of the putative peptide-binding protein AppA from <i>Clostridium difficile</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 246-253.	0.4	10
141	Bacillus subtilisdivision protein DivIVA – screen for stable oligomer state conditions. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1542-1543.	2.5	8
142	Structures of two superoxide dismutases fromBacillus anthracisreveal a novel active centre. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 621-624.	0.7	8
143	Single-molecule optical microscopy of protein dynamics and computational analysis of images to determine cell structure development in differentiating Bacillus subtilis. Computational and Structural Biotechnology Journal, 2020, 18, 1474-1486.	1.9	8
144	Bromodomain factor 5 is an essential regulator of transcription in Leishmania. Nature Communications, 2022, 13, .	5.8	8

#	Article	IF	CITATIONS
145	Solution of the structure of the cofactor-binding fragment of CysB: a struggle against non-isomorphism. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 369-378.	2.5	7
146	Crystallization of the regulatory and effector domains of the key sporulation response regulator SpoOA. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 671-676.	2.5	7
147	Crystallization of full-length CysB ofKlebsiella aerogenes, a LysR-type transcriptional regulator. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 260-262.	2.5	7
148	Crystallization of the AAA domain of the ATP-dependent protease FtsH ofEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1066-1067.	2.5	7
149	Crystallization and preliminary crystallographic studies of the cofactor-binding domain of the LysR-type transcriptional regulator Cbl fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1654-1657.	2.5	7
150	The Structure of Bypass of Forespore C, an Intercompartmental Signaling Factor during Sporulation in Bacillus. Journal of Biological Chemistry, 2005, 280, 36214-36220.	1.6	7
151	Crystallization of a DNA and N-acetylserine Binding Fragment (Residues 1 to 233) of Klebsiella aerogenes CysB Protein, a Member of the LysR Family. Journal of Molecular Biology, 1994, 235, 1159-1161.	2.0	6
152	Site-directed mutagenesis of the base recognition loop of ribonuclease from Bacillus intermedius (binase). FEBS Letters, 1996, 384, 143-146.	1.3	6
153	Cloning, overexpression, crystallization and preliminary X-ray crystallographic analysis of a slow-processing mutant of penicillin G acylase from <i>Kluyvera citrophila</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 925-929.	0.7	6
154	Drug discovery in leishmaniasis using protein lipidation as a target. Biophysical Reviews, 2021, 13, 1139-1146.	1.5	6
155	Lessons and questions from the structure of the SpoOA activation domain: Response. Trends in Microbiology, 2001, 9, 150-151.	3.5	5
156	Expression and localization of SpoIISA toxin during the life cycle of Bacillus subtilis. Research in Microbiology, 2010, 161, 750-756.	1.0	5
157	Alanine-scanning mutagenesis of protein mannosyl-transferase from Streptomyces coelicolor reveals strong activity-stability correlation. Microbiology (United Kingdom), 2021, 167, .	0.7	5
158	Genetic dissection of tyrosyl-tRNA synthetase. Biochemical Society Transactions, 1984, 12, 224-225.	1.6	4
159	Oxidation of residue 45 mutant forms of pig deoxymyoglobin with [Fe(CN)6]3â^'. Journal of Inorganic Biochemistry, 1992, 48, 79-84.	1.5	3
160	Bacillus subtilis regulatory protein GerE. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 1453-1455.	2.5	3
161	The <i>Corynebacterium glutamicum</i> aconitase repressor: scratching around for crystals. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1074-1077.	0.7	3
162	Engineering of tyrosyl tRNA synthetase. Biochimie, 1985, 67, 737-743.	1.3	2

#	Article	IF	CITATIONS
163	Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B. stearothermophilus. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 1216-1218.	2.5	2
164	Crystallization of the oligopeptide-binding protein AppA fromBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 175-177.	2.5	2
165	Crystallization of YloQ, a GTPase of unknown function essential forBacillus subtilisviability. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 329-330.	2.5	2
166	High-resolution temporal analysis of global promoter activity in Bacillus subtilis. Methods in Microbiology, 2012, 39, 1-26.	0.4	2
167	Crystallization and preliminary X-ray analysis of the sporulation factor SpollAA in its native and phosphorylated forms. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 292-295.	2.5	1
168	Crystal structures of the GH18 domain of the bifunctional peroxiredoxin–chitinase CotE from <i>Clostridium difficile</i> . Acta Crystallographica Section F, Structural Biology Communications, 2020, 76, 241-249.	0.4	1
169	The structure of Rph, an exoribonuclease fromBacillus anthracis, at 1.7â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 2-7.	0.7	0
170	The Selected Papers of Sir Alan Fersht: Development of Protein Engineering. Protein Engineering, Design and Selection, 2011, 24, 225-227.	1.0	0
171	A rapid introduction to neurological biochemistry using Drosophila melanogaster. Invertebrate Neuroscience, 2018, 18, 15.	1.8	0
172	Identification of essential residues for polyprenol phosphate mannose synthase and protein O-mannosyl transferase activities required for protein glycosylation in Streptomyces. Access Microbiology, 2019, 1, .	0.2	0