Maria Helena Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372745/publications.pdf

Version: 2024-02-01

471371 377752 57 1,256 17 34 citations h-index g-index papers 62 62 62 1587 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 2022, 14, 403.	2.0	19
2	Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Materials, 2022, 10, .	2.2	7
3	Structural Batteries: A Review. Molecules, 2021, 26, 2203.	1.7	36
4	Direct growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>ıl:mŋ><td>nl:msub>12</td></td></mml:mn></mml:msub></mml:math>	ıl:mŋ> <td>nl:msub>12</td>	nl:msub>12
5	The Latest Trends in Electric Vehicles Batteries. Molecules, 2021, 26, 3188.	1.7	39
6	Coherence in the Ferroelectric A3ClO (A = Li, Na) Family of Electrolytes. Materials, 2021, 14, 2398.	1.3	10
7	An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules, 2021, 26, 5226.	1.7	14
8	Dataset on a ferroelectric based electrostatic and electrochemical Li-cell with a traditional cathode. Data in Brief, 2020, 29, 105087.	0.5	2
9	The Ag–Li system's experimental and ab initio thermodynamic dataset. Data in Brief, 2020, 28, 104939.	0.5	3
10	Experimental and ab initio study of the Ag–Li system for energy storage and high-temperature solders. Journal of Alloys and Compounds, 2020, 817, 152811.	2.8	10
11	Dataset on a primary lithium battery cell with a ferroelectric Li-glass electrolyte and MnO2 cathode. Data in Brief, 2020, 29, 105339.	0.5	1
12	Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nature Communications, 2020, 11 , 3203.	5.8	31
13	Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance. Applied Physics Reviews, 2020, 7, .	5.5	26
14	Thermodynamic considerations of same-metal electrodes in an asymmetric cell. Materials Theory, 2019, 3, .	2.2	4
15	Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell. ACS Applied Energy Materials, 2019, 2, 4943-4953.	2.5	8
16	Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Journal of the American Chemical Society, 2018, 140, 6343-6352.	6.6	58
17	Batteries for electric road vehicles. Dalton Transactions, 2018, 47, 645-648.	1.6	35
18	Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectrics. Journal of the American Chemical Society, 2018, 140, 17968-17976.	6.6	21

#	Article	IF	Citations
19	Formation enthalpy of Ga-Li intermetallic phases. Experiment vs. calculations. Journal of Chemical Thermodynamics, 2018, 124, 101-106.	1.0	7
20	Electric Dipoles and Ionic Conductivity in a Na ⁺ Glass Electrolyte. Journal of the Electrochemical Society, 2017, 164, A207-A213.	1.3	26
21	Alternative strategy for a safe rechargeable battery. Energy and Environmental Science, 2017, 10, 331-336.	15.6	228
22	First principles, thermal stability and thermodynamic assessment of the binary Ni–W system. International Journal of Materials Research, 2017, 108, 1025-1035.	0.1	17
23	Delithiated LiyCo0.8Ni0.1Mn0.1O2 cathode materials for lithium-ion batteries: Structural, magnetic and electrochemical studies. Solid State Ionics, 2016, 289, 207-213.	1.3	10
24	Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy and Environmental Science, 2016, 9, 948-954.	15.6	106
25	The B-Li System. Calorimetric and Theoretical Studies / UkÅ,ad B-Li. Badania Kalorymetryczne I Teoretyczne. Archives of Metallurgy and Materials, 2015, 60, 2513-2520.	0.6	2
26	Theoretical investigation of defect structure in B2 TrSc (Tr =Cd, Ru) alloys. Modern Physics Letters B, 2015, 29, 1550234.	1.0	1
27	Calorimetric measurements and first principles to study the (Ag-Li) liquid system. Journal of Chemical Thermodynamics, 2015, 82, 53-57.	1.0	7
28	High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3â^'xCax/2OCl anti-perovskite halides. Inorganic Chemistry Communication, 2014, 48, 140-143.	1.8	33
29	Li–Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment. Journal of Alloys and Compounds, 2014, 616, 581-593.	2.8	36
30	Novel Li ₃ ClO based glasses with superionic properties for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 5470-5480.	5.2	158
31	The catalytic reactions in the Cu–Li–Mg–H high capacity hydrogen storage system. Physical Chemistry Chemical Physics, 2014, 16, 23012-23025.	1.3	10
32	Optimization and assessment of the Ag–Ca phase diagram. Journal of Alloys and Compounds, 2014, 612, 280-286.	2.8	3
33	The Role of Defects in Li3ClO Solid Electrolyte: Calculations and Experiments. Materials Research Society Symposia Proceedings, 2013, 1526, 1.	0.1	10
34	First principles calculations and experiments for Cu-Mg/Li hydrides negative electrodes. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	0
35	Increasing the reactive surface area of a Li three dimensional negative electrode by morphology control. Applied Physics Letters, 2013, 103, 233901.	1.5	3
36	Study of the Cu–Li–Mg–H system by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2012, 108, 733-739.	2.0	3

3

#	Article	IF	CITATIONS
37	New Promising Hydride Based on the Cu-Li-Mg System. Journal of Physics: Conference Series, 2010, 251, 012040.	0.3	4
38	Neutron powder diffraction and first-principles computational studies of CuLixMg2â^'x (xâ%0.08), CuMg2, and Cu2Mg. Journal of Solid State Chemistry, 2010, 183, 10-19.	1.4	12
39	Neutron Scattering to Characterize Cu/Mg(Li) Destabilized Hydrogen Storage Materials. Materials Research Society Symposia Proceedings, 2010, 1262, 1.	0.1	1
40	Phase field simulations in miscibility gaps. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 237-243.	0.7	14
41	Simulation of the spinodal phase separation dynamics of the Bi–Zn system. Journal of Non-Crystalline Solids, 2008, 354, 5340-5342.	1.5	5
42	The experimental study of the Bi–Sn, Bi–Zn and Bi–Sn–Zn systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 468-478.	0.7	70
43	Thermodynamic assessment of the Bi–Sn–Zn System. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 438-448.	0.7	73
44	A ternary phase in Cu–Li–Mg system. Journal of Alloys and Compounds, 2007, 436, 278-284.	2.8	6
45	HT-XRD in the study of Cu-Li-Mg. Zeitschrift Fýr Kristallographie, Supplement, 2007, 2007, 299-304.	0.5	4
46	The behavior of the lattice parameters in the Bi-Sn-Zn system. Journal of Mining and Metallurgy, Section B: Metallurgy, 2007, 43, 151-159.	0.3	1
47	Experimental Phase Diagram of the Ternary Bi-Sn-Zn. Materials Science Forum, 2006, 514-516, 1682-1688.	0.3	0
48	The Cu–Li–Mg system at room temperature. Thermochimica Acta, 2000, 344, 47-54.	1,2	10
49	Relationship between the DTA peak and the phase diagram: symbiosis between a thermodynamic database and a DTA curve. Journal of Materials Processing Technology, 1999, 92-93, 31-34.	3.1	4
50	Thermodynamic assessment of the Li-Si system. Journal of Phase Equilibria and Diffusion, 1995, 16, 324-330.	0.3	34
51	Phase Transitions in the Cu-Sb-S System. Materials Science Forum, 0, 587-588, 435-439.	0.3	16
52	First Principles Study of Copper Sulfides (for Applications as Photoconductors). Materials Science Forum, 0, 730-732, 111-116.	0.3	3
53	First Principles Calculations and Experiments to Determine the Hydrogenation Process of Cu-Li-Mg. Materials Science Forum, 0, 730-732, 799-804.	0.3	0
54	Experimental and First Principles Study of the Ni-Ti-W System. Materials Science Forum, 0, 730-732, 775-780.	0.3	3

#	Article	IF	CITATIONS
55	Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function. , 0, , .		O
56	Anode-Less Rechargeable Lithium Battery: The Effect of an Artificial Interface Layer. , 0, , .		O
57	Structural Cork in Ferroelectric Solid-State Devices by Scanning Kelvin Probe. , 0, , .		O