Maria Helena Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative strategy for a safe rechargeable battery. Energy and Environmental Science, 2017, 10, 331-336.	15.6	228
2	Novel Li ₃ ClO based glasses with superionic properties for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 5470-5480.	5.2	158
3	Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy and Environmental Science, 2016, 9, 948-954.	15.6	106
4	Thermodynamic assessment of the Bi–Sn–Zn System. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 438-448.	0.7	73
5	The experimental study of the Bi–Sn, Bi–Zn and Bi–Sn–Zn systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 468-478.	0.7	70
6	Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Journal of the American Chemical Society, 2018, 140, 6343-6352.	6.6	58
7	The Latest Trends in Electric Vehicles Batteries. Molecules, 2021, 26, 3188.	1.7	39
8	Li–Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment. Journal of Alloys and Compounds, 2014, 616, 581-593.	2.8	36
9	Structural Batteries: A Review. Molecules, 2021, 26, 2203.	1.7	36
10	Batteries for electric road vehicles. Dalton Transactions, 2018, 47, 645-648.	1.6	35
11	Thermodynamic assessment of the Li-Si system. Journal of Phase Equilibria and Diffusion, 1995, 16, 324-330.	0.3	34
12	High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3â^'xCax/2OCl anti-perovskite halides. Inorganic Chemistry Communication, 2014, 48, 140-143.	1.8	33
13	Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers. Nature Communications, 2020, 11, 3203.	5.8	31
14	Electric Dipoles and Ionic Conductivity in a Na ⁺ Glass Electrolyte. Journal of the Electrochemical Society, 2017, 164, A207-A213.	1.3	26
15	Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance. Applied Physics Reviews, 2020, 7, .	5.5	26
16	Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectrics. Journal of the American Chemical Society, 2018, 140, 17968-17976.	6.6	21
17	Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 2022, 14, 403.	2.0	19
18	First principles, thermal stability and thermodynamic assessment of the binary Ni–W system. International Journal of Materials Research, 2017, 108, 1025-1035.	0.1	17

MARIA HELENA BRAGA

#	Article	lF	CITATIONS
19	Phase Transitions in the Cu-Sb-S System. Materials Science Forum, 0, 587-588, 435-439.	0.3	16
20	Phase field simulations in miscibility gaps. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 237-243.	0.7	14
21	An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolyte. Molecules, 2021, 26, 5226.	1.7	14
22	Neutron powder diffraction and first-principles computational studies of CuLixMg2â^'x (xâ‰0.08), CuMg2, and Cu2Mg. Journal of Solid State Chemistry, 2010, 183, 10-19.	1.4	12
23	Direct growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2on electrolytic substrate and realization of high-mobility transistors. Physical Review Materials, 2021, 5</mml:mn></mml:msub></mml:math 	:mŋ> <td>າl:msub></td>	າl:msub>
24	The Cu–Li–Mg system at room temperature. Thermochimica Acta, 2000, 344, 47-54.	1.2	10
25	The Role of Defects in Li3ClO Solid Electrolyte: Calculations and Experiments. Materials Research Society Symposia Proceedings, 2013, 1526, 1.	0.1	10
26	The catalytic reactions in the Cu–Li–Mg–H high capacity hydrogen storage system. Physical Chemistry Chemical Physics, 2014, 16, 23012-23025.	1.3	10
27	Delithiated LiyCo0.8Ni0.1Mn0.1O2 cathode materials for lithium-ion batteries: Structural, magnetic and electrochemical studies. Solid State Ionics, 2016, 289, 207-213.	1.3	10
28	Experimental and ab initio study of the Ag–Li system for energy storage and high-temperature solders. Journal of Alloys and Compounds, 2020, 817, 152811.	2.8	10
29	Coherence in the Ferroelectric A3ClO (A = Li, Na) Family of Electrolytes. Materials, 2021, 14, 2398.	1.3	10
30	Low-Temperature Performance of a Ferroelectric Glass Electrolyte Rechargeable Cell. ACS Applied Energy Materials, 2019, 2, 4943-4953.	2.5	8
31	Calorimetric measurements and first principles to study the (Ag-Li) liquid system. Journal of Chemical Thermodynamics, 2015, 82, 53-57.	1.0	7
32	Formation enthalpy of Ga-Li intermetallic phases. Experiment vs. calculations. Journal of Chemical Thermodynamics, 2018, 124, 101-106.	1.0	7
33	Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Materials, 2022, 10, .	2.2	7
34	A ternary phase in Cu–Li–Mg system. Journal of Alloys and Compounds, 2007, 436, 278-284.	2.8	6
35	Simulation of the spinodal phase separation dynamics of the Bi–Zn system. Journal of Non-Crystalline Solids, 2008, 354, 5340-5342.	1.5	5
36	Relationship between the DTA peak and the phase diagram: symbiosis between a thermodynamic database and a DTA curve. Journal of Materials Processing Technology, 1999, 92-93, 31-34.	3.1	4

Maria Helena Braga

#	Article	IF	CITATIONS
37	New Promising Hydride Based on the Cu-Li-Mg System. Journal of Physics: Conference Series, 2010, 251, 012040.	0.3	4
38	Thermodynamic considerations of same-metal electrodes in an asymmetric cell. Materials Theory, 2019, 3, .	2.2	4
39	HT-XRD in the study of Cu-Li-Mg. Zeitschrift Für Kristallographie, Supplement, 2007, 2007, 299-304.	0.5	4
40	First Principles Study of Copper Sulfides (for Applications as Photoconductors). Materials Science Forum, 0, 730-732, 111-116.	0.3	3
41	Experimental and First Principles Study of the Ni-Ti-W System. Materials Science Forum, 0, 730-732, 775-780.	0.3	3
42	Study of the Cu–Li–Mg–H system by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2012, 108, 733-739.	2.0	3
43	Increasing the reactive surface area of a Li three dimensional negative electrode by morphology control. Applied Physics Letters, 2013, 103, 233901.	1.5	3
44	Optimization and assessment of the Ag–Ca phase diagram. Journal of Alloys and Compounds, 2014, 612, 280-286.	2.8	3
45	The Ag–Li system's experimental and ab initio thermodynamic dataset. Data in Brief, 2020, 28, 104939.	0.5	3
46	The B-Li System. Calorimetric and Theoretical Studies / UkÅ,ad B-Li. Badania Kalorymetryczne I Teoretyczne. Archives of Metallurgy and Materials, 2015, 60, 2513-2520.	0.6	2
47	Dataset on a ferroelectric based electrostatic and electrochemical Li-cell with a traditional cathode. Data in Brief, 2020, 29, 105087.	0.5	2
48	Neutron Scattering to Characterize Cu/Mg(Li) Destabilized Hydrogen Storage Materials. Materials Research Society Symposia Proceedings, 2010, 1262, 1.	0.1	1
49	Theoretical investigation of defect structure in B2 TrSc (Tr =Cd, Ru) alloys. Modern Physics Letters B, 2015, 29, 1550234.	1.0	1
50	Dataset on a primary lithium battery cell with a ferroelectric Li-glass electrolyte and MnO2 cathode. Data in Brief, 2020, 29, 105339.	0.5	1
51	The behavior of the lattice parameters in the Bi-Sn-Zn system. Journal of Mining and Metallurgy, Section B: Metallurgy, 2007, 43, 151-159.	0.3	1
52	Experimental Phase Diagram of the Ternary Bi-Sn-Zn. Materials Science Forum, 2006, 514-516, 1682-1688.	0.3	0
53	First Principles Calculations and Experiments to Determine the Hydrogenation Process of Cu-Li-Mg. Materials Science Forum, 0, 730-732, 799-804.	0.3	0
54	First principles calculations and experiments for Cu-Mg/Li hydrides negative electrodes. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	0

#	Article	IF	CITATIONS
55	Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function. , 0, , .		0
56	Anode-Less Rechargeable Lithium Battery: The Effect of an Artificial Interface Layer. , 0, , .		0
57	Structural Cork in Ferroelectric Solid-State Devices by Scanning Kelvin Probe. , 0, , .		0