Yi-Cheun Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372572/publications.pdf

Version: 2024-02-01

		393982	3	377514
35	2,773	19		34
papers	citations	h-index		g-index
35	35	35		5432
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Development of a PCL-PEO double network colorimetric pH sensor using electrospun fibers containing Hibiscus rosa sinensis extract and silver nanoparticles for food monitoring. Food Chemistry, 2022, 368, 130813.	4.2	19
2	Ultrasound-triggered hydrogel formation through thiol-norbornene reaction. Chemical Communications, 2022, , .	2.2	2
3	Fabrication of waterâ€resistant, thermally stable, and antibacterial fibers through in situ multivalent crosslinking. Journal of Applied Polymer Science, 2022, 139, .	1.3	4
4	The Role of Aldehydeâ€Functionalized Crosslinkers on the Property of Chitosan Hydrogels. Macromolecular Bioscience, 2022, 22, e2100477.	2.1	6
5	Progress in the drug encapsulation of poly(lactic- <i>co</i> -glycolic acid) and folate-decorated poly(ethylene glycol)–poly(lactic- <i>co</i> -glycolic acid) conjugates for selective cancer treatment. Journal of Materials Chemistry B, 2022, 10, 4127-4141.	2.9	16
6	<i>In situ</i> formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomaterials Science, 2021, 9, 985-999.	2.6	14
7	Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. Journal of Materials Chemistry B, 2021, 9, 7100-7116.	2.9	21
8	Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomaterialia, 2021, 130, 66-79.	4.1	43
9	Poly(glycerol sebacate) <i>â€coâ€</i> poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Macromolecular Bioscience, 2021, 21, e2100248.	2.1	7
10	Di(2-picolyl)amine-functionalized poly(ethylene glycol) hydrogels with tailorable metal–ligand coordination crosslinking. Polymer Chemistry, 2021, 12, 6626-6639.	1.9	2
11	Fabrication of Multiresponsive Magnetic Nanocomposite Doubleâ€Network Hydrogels for Controlled Release Applications. Small, 2021, 17, e2105997.	5.2	13
12	Fabrication of Multiresponsive Magnetic Nanocomposite Doubleâ€Network Hydrogels for Controlled Release Applications (Small 52/2021). Small, 2021, 17, .	5.2	О
13	Encapsulation of Î ² -Glucosidase within PVA Fibers by CCD-RSM-Guided Coelectrospinning: A Novel Approach for Specific Mogroside Sweetener Production. Journal of Agricultural and Food Chemistry, 2020, 68, 11790-11801.	2.4	12
14	Formation of highly elastomeric and property-tailorable poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Biomaterials Science, 2020, 8, 4728-4738.	Td (sebac 2.6	ate)- <i>co</i>
15	Threeâ€dimensional extrusion bioprinting of single―and doubleâ€network hydrogels containing dynamic covalent crosslinks. Journal of Biomedical Materials Research - Part A, 2018, 106, 865-875.	2.1	218
16	Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. Polymer Chemistry, 2017, 8, 5091-5099.	1.9	46
17	Mechanically dynamic PDMS substrates to investigate changing cell environments. Biomaterials, 2017, 145, 23-32.	5.7	68
18	3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication, 2016, 8, 045004.	3.7	67

#	Article	IF	CITATIONS
19	Fabrication of Robust Protein Films Using Nanoimprint Lithography. Advanced Materials, 2015, 27, 6251-6255.	11.1	29
20	Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nature Chemistry, 2015, 7, 597-603.	6.6	395
21	Co-Delivery of Protein and Small Molecule Therapeutics Using Nanoparticle-Stabilized Nanocapsules. Bioconjugate Chemistry, 2015, 26, 950-954.	1.8	73
22	Fabrication of Multiresponsive Bioactive Nanocapsules through Orthogonal Self-Assembly. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	22
23	Mass Spectrometric Detection of Nanoparticle Host–Guest Interactions in Cells. Analytical Chemistry, 2014, 86, 6710-6714.	3.2	19
24	Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays. Cancer Letters, 2013, 334, 196-201.	3.2	35
25	The role of ligand coordination on the cytotoxicity of cationic quantum dots in HeLa cells. Nanoscale, 2013, 5, 12140.	2.8	30
26	Patterning of Protein/Quantum Dot Hybrid Bionanostructures. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 227-232.	1.9	9
27	Direct Patterning of Engineered Ionic Gold Nanoparticles via Nanoimprint Lithography. Advanced Materials, 2012, 24, 6330-6334.	11.1	32
28	Dendronized Gold Nanoparticles for siRNA Delivery. Small, 2012, 8, 3253-3256.	5.2	104
29	Determination of the Intracellular Stability of Gold Nanoparticle Monolayers Using Mass Spectrometry. Analytical Chemistry, 2012, 84, 4321-4326.	3.2	40
30	Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4, 1871-1880.	2.8	1,067
31	Direct patterning of quantum dot nanostructures via electron beam lithography. Journal of Materials Chemistry, 2011, 21, 16859.	6.7	41
32	Stability of quantum dots in live cells. Nature Chemistry, 2011, 3, 963-968.	6.6	121
33	Supramolecular Functionalization of Electron-Beam Generated Nanostructures. Langmuir, 2011, 27, 1543-1545.	1.6	15
34	Recognition-Mediated Assembly of Quantum Dot Polymer Conjugates with Controlled Morphology. International Journal of Molecular Sciences, 2011, 12, 6357-6366.	1.8	6
35	Engineering the nanoparticle–protein interface: applications and possibilities. Current Opinion in Chemical Biology, 2010, 14, 828-834.	2.8	161