Juan José MartÃ-nez-Irujo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372548/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavonoids Induce Apoptosis in Human Leukemia U937 Cells Through Caspase- and Caspase-Calpain-Dependent Pathways. Nutrition and Cancer, 2004, 50, 90-100.	2.0	121
2	A checkerboard method to evaluate interactions between drugs. Biochemical Pharmacology, 1996, 51, 635-644.	4.4	70
3	Flavonoids inhibit hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochemical Pharmacology, 2010, 79, 1600-1609.	4.4	68
4	Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget, 2016, 7, 30626-30641.	1.8	55
5	Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 880-890.	4.1	49
6	Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51. Neuro-Oncology, 2016, 18, 1109-1119.	1.2	42
7	Analysis of the combined effect of two linear inhibitors on a single enzyme. Biochemical Journal, 1998, 329, 689-698.	3.7	41
8	TGFβ-induced protein mediates lymphatic endothelial cell adhesion to the extracellular matrix under low oxygen conditions. Cellular and Molecular Life Sciences, 2008, 65, 2244-2255.	5.4	41
9	Two ellagitannins from the leaves ofTerminalia triï¬,orawith inhibitory activity on HIV-1 reverse transcriptase. Phytotherapy Research, 2004, 18, 667-669.	5.8	34
10	Fibronectin Peptides as Potential Regulators of Hepatic Fibrosis Through Apoptosis of Hepatic Stellate Cells. Journal of Cellular Physiology, 2015, 230, 546-553.	4.1	34
11	Unfolded protein response induced by Brefeldin A increases collagen type I levels in hepatic stellate cells through an IRE11±, p38 MAPK and Smad-dependent pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2115-2123.	4.1	33
12	NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells. Free Radical Biology and Medicine, 2018, 126, 15-26.	2.9	31
13	Contribution of phosphodiesterase isoenzymes and cyclic nucleotide efflux to the regulation of cyclic GMP levels in aortic smooth muscle cells. Biochemical Pharmacology, 1999, 58, 1675-1683.	4.4	30
14	Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase Inhibit Phosphorolysis and Resensitize the 3′-Azido-3′-deoxythymidine (AZT)-resistant Polymerase to AZT-5′-triphosphate. Journal of Biological Chemistry, 2003, 278, 42710-42716.	3.4	28
15	Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation. Toxicology and Applied Pharmacology, 2008, 228, 334-342.	2.8	27
16	Synergistic Inhibition of HIV-1 Reverse Transcriptase by Combinations of Chain-Terminating Nucleotides. Biochemistry, 1997, 36, 13223-13231.	2.5	24
17	Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase. FEBS Journal, 2001, 268, 1163-1172.	0.2	23
18	Inhibition of Phosphorolysis Catalyzed by HIV-1 Reverse Transcriptase Is Responsible for the Synergy Found in Combinations of 3â€~-Azido-3â€~-deoxythymidine with Nonnucleoside Inhibitorsâ€. Biochemistry, 2005. 44. 3535-3546.	2.5	23

#	Article	IF	CITATIONS
19	Indoles and pyridazino[4,5-b]indoles as nonnucleoside analog inhibitors of HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 1995, 30, 963-971.	5.5	21
20	Selective Excision of Chain-terminating Nucleotides by HIV-1 Reverse Transcriptase with Phosphonoformate as Substrate. Journal of Biological Chemistry, 2006, 281, 27744-27752.	3.4	21
21	Oxidation pathways underlying the pro-oxidant effects of apigenin. Free Radical Biology and Medicine, 2015, 87, 169-180.	2.9	20
22	Argentine plant extracts active against polymerase and ribonuclease H activities of HIV-1 reverse transcriptase. , 1999, 13, 206-209.		18
23	Synthesis and anti-HIV-1 activities of new pyrimido[5,4-b]indoles. Il Farmaco, 1999, 54, 255-264.	0.9	16
24	Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells. Cells, 2020, 9, 637.	4.1	16
25	Role of AGAP2 in the profibrogenic effects induced by TGFβ in LX-2 hepatic stellate cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 673-685.	4.1	15
26	Inhibitory effect against polymerase and ribonuclease activities of HIV-reverse transcriptase of the aqueous leaf extract ofTerminalia triflora. Phytotherapy Research, 2002, 16, 778-780.	5.8	10
27	Cytotoxic and Proapototic Activities of Imidoselenocarbamate Derivatives Are Dependent on the Release of Methylselenol. Chemical Research in Toxicology, 2012, 25, 2479-2489.	3.3	10
28	Novel structural insights for imidoselenocarbamates with antitumoral activity related to their ability to generate methylselenol. Bioorganic and Medicinal Chemistry, 2012, 20, 5110-5116.	3.0	10
29	New 4-Amino-7,8-dimethoxy-5h-pyrimido[5,4-b]indole Derivatives: Synthesis and Studies as Inhibitors of Phosphodiesterases. Archiv Der Pharmazie, 1993, 326, 879-885.	4.1	8
30	All-trans-retinoic acid inhibits collapsin response mediator protein-2 transcriptional activity during SH-SY5Y neuroblastoma cell differentiation. FEBS Journal, 2007, 274, 498-511.	4.7	8
31	NADPH Oxidase 5 Induces Changes in the Unfolded Protein Response in Human Aortic Endothelial Cells and in Endothelial-Specific Knock-in Mice. Antioxidants, 2021, 10, 194.	5.1	7
32	A Novel Class of Cardiotonic Agents: Synthesis and Biological Evaluation of Pyridazino[4,5-b]indoles with Cyclic AMP Phosphodiesterases Inhibiting Properties. Journal of Pharmaceutical Sciences, 1993, 82, 526-530.	3.3	6
33	New Indole and Triazino[5,4-b]indol-4-one Derivatives: Synthesis and Studies as Inotropics and Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1992, 325, 439-452.	4.1	4
34	New Indole and Pyridazinoindole Analogs — Synthesis and Study as Inhibitors of Phosphodiesterases and as Inhibitors of Blood Platelet Aggregation. Archiv Der Pharmazie, 1995, 328, 689-698.	4.1	3
35	A new strategy to inhibit the excision reaction catalysed by HIV-1 reverse transcriptase: compounds that compete with the template–primer. Biochemical Journal, 2007, 405, 165-171.	3.7	3