
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372533/publications.pdf Version: 2024-02-01

WEDNED A KIID7

#	Article	IF	CITATIONS
1	Large Soil Carbon Storage in Terrestrial Ecosystems of Canada. Global Biogeochemical Cycles, 2022, 36, .	1.9	33
2	Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods. , 2022, , 59-85.		0
3	The European forest carbon budget under future climate conditions and current management practices. Biogeosciences, 2022, 19, 3263-3284.	1.3	19
4	Cumulative effects of natural and anthropogenic disturbances on the forest carbon balance in the oil sands region of Alberta, Canada; a pilot study (1985–2012). Carbon Balance and Management, 2021, 16, 3.	1.4	4
5	Land-based emissions. Nature Climate Change, 2021, 11, 382-383.	8.1	8
6	Natural climate solutions for Canada. Science Advances, 2021, 7, .	4.7	95
7	Restoring Degraded Lands. Annual Review of Environment and Resources, 2021, 46, 569-599.	5.6	26
8	Inward- versus outward-focused bioeconomy strategies for British Columbia's forest products industry: a harvested wood products carbon storage and emission perspective. Carbon Balance and Management, 2021, 16, 30.	1.4	12
9	Climate change mitigation in British Columbia's forest sector: GHG reductions, costs, and environmental impacts. Carbon Balance and Management, 2020, 15, 21.	1.4	24
10	The Canadian model for peatlands (CaMP): A peatland carbon model for national greenhouse gas reporting. Ecological Modelling, 2020, 431, 109164.	1.2	19
11	Tree Ring Reconstructions of Stemwood Biomass Indicate Increases in the Growth Rate of Black Spruce Trees Across Boreal Forests of Canada. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2460-2480.	1.3	18
12	Empirical and Predicted Boreal Forest Carbon Pools Following Stemâ€Only Harvesting in Quebec, Canada. Soil Science Society of America Journal, 2019, 83, S59.	1.2	6
13	A Canadian upland forest soil profile and carbon stocks database. Ecology, 2018, 99, 989-989.	1.5	6
14	Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico's forest sector. Environmental Research Letters, 2018, 13, 035003.	2.2	17
15	Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 257-290.	1.0	60
16	Statistical performance and behaviour of environmentally-sensitive composite models of lodgepole pine growth. Forest Ecology and Management, 2018, 408, 157-173.	1.4	8
17	Climate, economic, and environmental impacts of producing wood for bioenergy. Environmental Research Letters, 2018, 13, 050201.	2.2	47
18	Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Carbon Balance and Management, 2018, 13, 11.	1.4	18

#	Article	IF	CITATIONS
19	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	8.1	101
20	A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Carbon Balance and Management, 2018, 13, 13.	1.4	29
21	Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance and Management, 2018, 13, 9.	1.4	37
22	Science-based approach for credible accounting of mitigation in managed forests. Carbon Balance and Management, 2018, 13, 8.	1.4	47
23	Low Tree-Growth Elasticity of Forest Biomass Indicated by an Individual-Based Model. Forests, 2018, 9, 21.	0.9	7
24	Cost of climate change mitigation in Canada's forest sector. Canadian Journal of Forest Research, 2017, 47, 604-614.	0.8	13
25	Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. Journal of Environmental Management, 2017, 193, 318-325.	3.8	17
26	Climate change mitigation potential of local use of harvest residues for bioenergy in Canada. GCB Bioenergy, 2017, 9, 817-832.	2.5	40
27	Estimating product and energy substitution benefits in nationalâ€scale mitigation analyses for Canada. GCB Bioenergy, 2017, 9, 1071-1084.	2.5	83
28	Constraining the organic matter decay parameters in the CBM-CFS3 using Canadian National Forest Inventory data and a Bayesian inversion technique. Ecological Modelling, 2017, 364, 1-12.	1.2	21
29	Relationships between individualâ€ŧree mortality and waterâ€balance variables indicate positive trends in water stressâ€induced tree mortality across North America. Global Change Biology, 2017, 23, 1691-1710.	4.2	100
30	Increasing net ecosystem biomass production of Canada's boreal and temperate forests despite decline in dry climates. Global Biogeochemical Cycles, 2017, 31, 134-158.	1.9	37
31	The European forest sector: past and future carbon budget and fluxes under different management scenarios. Biogeosciences, 2017, 14, 2387-2405.	1.3	38
32	Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Global Change Biology, 2016, 22, 627-643.	4.2	141
33	Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Carbon Balance and Management, 2016, 11, 20.	1.4	30
34	Improving carbon monitoring and reporting in forests using spatially-explicit information. Carbon Balance and Management, 2016, 11, 23.	1.4	18
35	No growth stimulation of Canada's boreal forest under half-century of combined warming and CO ₂ fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8406-E8414.	3.3	233
36	Modelling moss-derived carbon in upland black spruce forests. Canadian Journal of Forest Research, 2016, 46, 520-534.	0.8	12

#	Article	IF	CITATIONS
37	Potential nearâ€future carbon uptake overcomes losses from a large insect outbreak in British Columbia, Canada. Geophysical Research Letters, 2016, 43, 2590-2598.	1.5	25
38	Integration of Landsat time series and field plots for forest productivity estimates in decision support models. Forest Ecology and Management, 2016, 376, 284-297.	1.4	32
39	Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries' estimates for forest management. Carbon Balance and Management, 2016, 11, 5.	1.4	22
40	Attributing changes in land cover using independent disturbance datasets: a case study of the Yucatan Peninsula, Mexico. Regional Environmental Change, 2016, 16, 213-228.	1.4	19
41	Carbon sequestration by white spruce shelterbelts in Saskatchewan, Canada: 3PG and CBM-CFS3 model simulations. Ecological Modelling, 2016, 325, 35-46.	1.2	26
42	Accelerating Forest Growth Enhancement due to Climate and Atmospheric Changes in British Colombia, Canada over 1956-2001. Scientific Reports, 2015, 4, 4461.	1.6	27
43	Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates. Carbon Balance and Management, 2015, 10, 30.	1.4	16
44	North America's net terrestrial CO ₂ exchange with the atmosphere 1990–2009. Biogeosciences, 2015, 12, 399-414.	1.3	54
45	If forest dynamics in Canada's west are driven mainly by competition, why did they change? Half-century evidence says: Climate change. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4340-E4340.	3.3	19
46	Deforestation mapping sampling designs for Canadian landscapes. Canadian Journal of Forest Research, 2015, 45, 1564-1576.	0.8	1
47	Quantifying the biophysical climate change mitigation potential of Canada's forest sector. Biogeosciences, 2014, 11, 3515-3529.	1.3	134
48	Climate and atmospheric drivers of historical terrestrial carbon uptake in the province of British Columbia, Canada. Biogeosciences, 2014, 11, 635-649.	1.3	21
49	Animating the Carbon Cycle. Ecosystems, 2014, 17, 344-359.	1.6	168
50	Simulating impacts of water stress on woody biomass in the southern boreal region of western Canada using a dynamic vegetation model. Agricultural and Forest Meteorology, 2014, 198-199, 142-154.	1.9	14
51	A 100-year conservation experiment: Impacts on forest carbon stocks and fluxes. Forest Ecology and Management, 2013, 310, 242-255.	1.4	32
52	Approaches to monitoring changes in carbon stocks for REDD+. Carbon Management, 2013, 4, 519-537.	1.2	49
53	Application of the CBM-CFS3 model to estimate Italy's forest carbon budget, 1995–2020. Ecological Modelling, 2013, 266, 144-171.	1.2	47
54	Are Mosses Required to Accurately Predict Upland Black Spruce Forest Soil Carbon in National-Scale Forest C Accounting Models?. Ecosystems, 2013, 16, 1071-1086.	1.6	33

#	Article	IF	CITATIONS
55	The impact of tropospheric ozone on landscape-level merchantable biomass and ecosystem carbon in Canadian forests. European Journal of Forest Research, 2013, 132, 71-81.	1.1	11
56	Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography, 2013, 22, 994-1006.	2.7	144
57	Improved assessment of gross and net primary productivity of Canada's landmass. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1546-1560.	1.3	41
58	The carbon implications of largeâ€scale afforestation of agriculturally marginal land with shortâ€rotation willow in <scp>S</scp> askatchewan. GCB Bioenergy, 2012, 4, 70-87.	2.5	43
59	Interannual variability of net carbon exchange is related to the lag between the end-dates of net carbon uptake and photosynthesis: Evidence from long records at two contrasting forest stands. Agricultural and Forest Meteorology, 2012, 164, 29-38.	1.9	59
60	Interannual and spatial impacts of phenological transitions, growing season length, and spring and autumn temperatures on carbon sequestration: A North America flux data synthesis. Global and Planetary Change, 2012, 92-93, 179-190.	1.6	64
61	Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventoryâ€based data. Global Change Biology, 2012, 18, 1282-1299.	4.2	116
62	Land surface phenology from optical satellite measurement and CO ₂ eddy covariance technique. Journal of Geophysical Research, 2012, 117, .	3.3	106
63	Accelerating regrowth of temperateâ€maritime forests due to environmental change. Global Change Biology, 2012, 18, 2026-2040.	4.2	65
64	A Large and Persistent Carbon Sink in the World's Forests. Science, 2011, 333, 988-993.	6.0	5,393
65	Uncertainty of 21st century growing stocks and GHG balance of forests in British Columbia, Canada resulting from potential climate change impacts on ecosystem processes. Forest Ecology and Management, 2011, 262, 827-837.	1.4	42
66	An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 2011, 17, 2227-2244.	4.2	232
67	Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests. Ecosystems, 2010, 13, 917-931.	1.6	94
68	Implications of differing input data sources and approaches upon forest carbon stock estimation. Environmental Monitoring and Assessment, 2010, 166, 543-561.	1.3	20
69	Comparing measured and modelled forest carbon stocks in high-boreal forests of harvest and natural-disturbance origin in Labrador, Canada. Ecological Modelling, 2010, 221, 825-839.	1.2	20
70	An ecosystem context for global gross forest cover loss estimates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9025-9026.	3.3	27
71	Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. Forest Ecology and Management, 2010, 260, 181-192.	1.4	76
72	CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecological Modelling, 2009, 220, 480-504.	1.2	403

#	Article	IF	CITATIONS
73	Projected forest carbon sinks highly vulnerable to increases in natural disturbances. IOP Conference Series: Earth and Environmental Science, 2009, 6, 042020.	0.2	Ο
74	Accounting of forest carbon sinks and sources under a future climate protocol—factoring out past disturbance and management effects on age–class structure. Environmental Science and Policy, 2008, 11, 669-686.	2.4	56
75	Mountain pine beetle and forest carbon feedback to climate change. Nature, 2008, 452, 987-990.	13.7	1,582
76	A practical approach for assessing the sensitivity of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Ecological Modelling, 2008, 219, 373-382.	1.2	22
77	Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. Forest Ecology and Management, 2008, 255, 3632-3641.	1.4	45
78	Derivation of a spatially explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island, BC. Forest Ecology and Management, 2008, 256, 1677-1691.	1.4	51
79	Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 2259-2268.	1.8	98
80	Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1551-1555.	3.3	431
81	Mapping the environmental limitations to growth of coastal Douglas-fir stands on Vancouver Island, British Columbia. Tree Physiology, 2007, 27, 805-815.	1.4	28
82	Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire, 2007, 16, 593.	1.0	96
83	Approximating natural landscape pattern using aggregated harvest. Canadian Journal of Forest Research, 2007, 37, 1846-1853.	0.8	13
84	Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environmental Science and Policy, 2007, 10, 370-384.	2.4	132
85	Developing Canada's National Forest Carbon Monitoring, Accounting and Reporting System to Meet the Reporting Requirements of the Kyoto Protocol. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 33-43.	1.0	78
86	Adaptive cluster sampling for estimation of deforestation rates. European Journal of Forest Research, 2005, 124, 207-220.	1.1	22
87	National level forest monitoring and modeling in Canada. Progress in Planning, 2004, 61, 365-381.	2.3	65
88	Estimating time since forest harvest using segmented Landsat ETM+ imagery. Remote Sensing of Environment, 2004, 93, 179-187.	4.6	82
89	Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Canadian Journal of Forest Research, 2003, 33, 126-136.	0.8	205
90	Temporal changes of forest net primary production and net ecosystem production in west central Canada associated with natural and anthropogenic disturbances. Canadian Journal of Forest Research, 2003, 33, 2340-2351.	0.8	31

#	Article	IF	CITATIONS
91	FOREST CARBON SINKS IN THE NORTHERN HEMISPHERE. , 2002, 12, 891-899.		696
92	Forest carbon accounting at the operational scale. Forestry Chronicle, 2002, 78, 672-679.	0.5	65
93	Estimating net primary production of forests in the Canadian Prairie Provinces using an inventory-based carbon budget model. Canadian Journal of Forest Research, 2002, 32, 161-169.	0.8	24
94	Historic carbon budgets of Ontario's forest ecosystems. Forest Ecology and Management, 2002, 169, 103-114.	1.4	31
95	A generalised approach of accounting for biospheric carbon stock changes under the Kyoto Protocol. Environmental Science and Policy, 2001, 4, 73-85.	2.4	24
96	TELSA: the Tool for Exploratory Landscape Scenario Analyses. Computers and Electronics in Agriculture, 2000, 27, 227-242.	3.7	74
97	Habitat patterns in forested landscapes: management practices and the uncertainty associated with natural disturbances. Computers and Electronics in Agriculture, 2000, 27, 243-262.	3.7	47
98	A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR. , 1999, 9, 526-547.		555
99	Past and Possible Future Carbon Dynamics of Canada's Boreal Forest Ecosystems. , 1998, , 63-88.		4
100	Carbon budget implications of the transition from natural to manged disturbance regimes in forest landscapes. Mitigation and Adaptation Strategies for Global Change, 1997, 2, 405-421.	1.0	24
101	Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Canadian Journal of Forest Research, 1996, 26, 1973-1979.	0.8	171
102	Retrospective assessment of carbon flows in Canadian boreal forests. , 1996, , 173-182.		33
103	WG2 Summary: Forests and the global carbon cycle: past, present, and future role. , 1996, , 199-208.		1
104	Effects of forest management, harvesting and wood processing on ecosystem carbon dynamics: a boreal case study. , 1996, , 279-292.		13
105	The carbon budget of Canadian forests: A sensitivity analysis of changes in disturbance regimes, growth rates, and decomposition rates. Environmental Pollution, 1994, 83, 55-61.	3.7	55
106	Boreal forests and tundra. Water, Air, and Soil Pollution, 1993, 70, 39-53.	1.1	197
107	Conntribution of northern forests to the global C cycle: Canada as a case study. Water, Air, and Soil Pollution, 1993, 70, 163-176.	1.1	56