D Ganesh

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9372207/d-ganesh-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23	1,179	11	24
papers	citations	h-index	g-index
24	1,426 ext. citations	7.5	5.5
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
23	A comprehensive insight from microalgae production process to characterization of biofuel for the sustainable energy. <i>Fuel</i> , 2022 , 310, 122320	7.1	8
22	Key Targets for Improving Algal Biofuel Production. Clean Technologies, 2021, 3, 711-742	3.4	4
21	Experimental Investigation of Neat Biodiesels Saturation Level on Combustion and Emission Characteristics in a CI Engine. <i>Energies</i> , 2021 , 14, 5203	3.1	1
20	Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH3)2 Catalyst. <i>Energies</i> , 2021 , 14, 6064	3.1	2
19	A comprehensive parametric, energy and exergy analysis for oxygenated biofuels based dual-fuel combustion in an automotive light duty diesel engine. <i>Fuel</i> , 2020 , 277, 118167	7.1	22
18	Combustion and emission characteristics of reformulated biodiesel fuel in a single-cylinder compression ignition engine. <i>International Journal of Environmental Science and Technology</i> , 2020 , 17, 243-252	3.3	7
17	A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. <i>Renewable Energy</i> , 2020 , 145, 542-556	8.1	89
16	Impact of bio-mix fuel on performance, emission and combustion characteristics in a single cylinder DICI VCR engine. <i>Renewable Energy</i> , 2020 , 146, 111-124	8.1	17
15	An integrated effort of medium reactivity fuel, in-cylinder, and after-treatment strategies to demonstrate potential reduction in challenging emissions of reactivity controlled compression ignition combustion. <i>Proceedings of the Institution of Mechanical Engineers, Part D: Journal of</i>	1.4	3
14	Production, combustion and emission impact of bio-mix methyl ester fuel on a stationary light duty diesel engine. <i>Journal of Cleaner Production</i> , 2019 , 233, 147-159	10.3	15
13	Production and characterization of bio-mix fuel produced from the mixture of raw oil feedstock, and its effects on performance and emission analysis in DICI diesel engine. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 16742-16761	5.1	7
12	Production and characterization of bio-mix fuel produced from a ternary and quaternary mixture of raw oil feedstock. <i>Journal of Cleaner Production</i> , 2019 , 221, 271-285	10.3	28
11	Statistical and experimental investigation of single fuel reactivity controlled compression ignition combustion on a non-road diesel engine. <i>Energy Conversion and Management</i> , 2019 , 199, 112025	10.6	10
10	Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. <i>Progress in Energy and Combustion Science</i> , 2015 , 46, 12-71	33.6	732
9	Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine. <i>Environmental Science & Environmental Science & En</i>	10.3	13
8	Performance and Emission Analysis on Mixed-Mode Homogeneous Charge Compression Ignition (HCCI) Combustion of Biodiesel Fuel with External Mixture Formation 2012 ,		4
7	Effect of nano-fuel additive on emission reduction in a biodiesel fuelled CI engine 2011,		47

LIST OF PUBLICATIONS

6	Homogeneous charge compression ignition (HCCI) combustion of diesel fuel with external mixture formation. <i>Energy</i> , 2010 , 35, 148-157	7.9	107
5	Homogeneous Charge Compression Ignition (HCCI) Combustion of Diesel Fuel with External Mixture Formation 2009 ,		5
4	Study of performance, combustion and emission characteristics of diesel homogeneous charge compression ignition (HCCI) combustion with external mixture formation. <i>Fuel</i> , 2008 , 87, 3497-3503	7.1	42
3	Effect of EGR and Premixed Mass Percentage on Cycle to Cycle Variation of Methanol/Diesel Dual Fuel RCCI Combustion		11
2	Effect of Polyoxymethylene Dimethyl Ethers-Diesel Blends as High-Reactivity Fuel in a Dual-Fuel Reactivity Controlled Compression Ignition Combustion. <i>SAE International Journal of Engines</i> ,13,	2.4	4
1	IMPACT OF OPERATING PARAMETERS ON ENERGY EFFICIENCY AND REGULATED EMISSIONS OF DUAL FUEL DIRECT INJECTED REACTIVITY-CONTROLLED COMPRESSION-IGNITION COMBUSTION. Energy Sources, Part A: Recovery, Utilization and Environmental Effects,1-22	1.6	1