
Susanne E Ahmari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Patterns of Abnormal Lateral Orbitofrontal Cortex Activity During Compulsive Grooming and Reversal Learning Normalize After Fluoxetine. Biological Psychiatry, 2023, 93, 989-999.	1.3	7
2	The prefrontal cortex and OCD. Neuropsychopharmacology, 2022, 47, 211-224.	5.4	29
3	Developmental impact of glutamate transporter overexpression on dopaminergic neuron activity and stereotypic behavior. Molecular Psychiatry, 2022, 27, 1515-1526.	7.9	6
4	A double-blind study assessing the impact of orbitofrontal theta burst stimulation on goal-directed behavior , 2022, 131, 287-300.		1
5	Lower excitatory synaptic gene expression in orbitofrontal cortex and striatum in an initial study of subjects with obsessive compulsive disorder. Molecular Psychiatry, 2021, 26, 986-998.	7.9	26
6	Animal Models for OCD Research. Current Topics in Behavioral Neurosciences, 2021, 49, 55-96.	1.7	9
7	Serotonin 5-HT1B receptor-mediated behavior and binding in mice with the overactive and dysregulated serotonin transporter Ala56 variant. Psychopharmacology, 2021, 238, 1111-1120.	3.1	7
8	Transcriptome alterations are enriched for synapse-associated genes in the striatum of subjects with obsessive-compulsive disorder. Translational Psychiatry, 2021, 11, 171.	4.8	13
9	Effect of Experimental Manipulation of the Orbitofrontal Cortex on Short-Term Markers of Compulsive Behavior: A Theta Burst Stimulation Study. American Journal of Psychiatry, 2021, 178, 459-468.	7.2	25
10	Disruption of prepulse inhibition is associated with compulsive behavior severity and nucleus accumbens dopamine receptor changes in Sapap3 knockout mice. Scientific Reports, 2021, 11, 9442.	3.3	15
11	27.2 Selective Overexpression of EAAT3 in Midbrain Dopamine Neurons Leads to Increased OCD-like Behaviors. Journal of the American Academy of Child and Adolescent Psychiatry, 2020, 59, S202.	0.5	Ο
12	Investigating the Effects of EAAT3 Overexpression on OCD-Relevant Behaviors in Mice. Biological Psychiatry, 2020, 87, S299-S300.	1.3	0
13	Altered baseline and amphetamine-mediated behavioral profiles in dopamine transporter Cre (DAT-Ires-Cre) mice compared to tyrosine hydroxylase Cre (TH-Cre) mice. Psychopharmacology, 2020, 237, 3553-3568.	3.1	16
14	The twoâ€step task, avoidance, and OCD. Journal of Neuroscience Research, 2020, 98, 1007-1019.	2.9	7
15	Neuronal excitatory amino acid transporter EAAT3: Emerging functions in health and disease. Neurochemistry International, 2019, 123, 69-76.	3.8	16
16	212. Dissecting Lateral Orbitofrontal Cortex Contributions to Distinct Perseverative Behaviors Using In Vivo Calcium Imaging in a Preclinical Mouse Model Relevant to OCD. Biological Psychiatry, 2019, 85, S88.	1.3	0
17	A Model of Restraint: Nucleus Accumbens Fast-Spiking Interneurons Inhibit Unwanted Actions. Biological Psychiatry, 2019, 86, 804-806.	1.3	1
18	Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior. Neuropsychopharmacology, 2019, 44, 1494-1504.	5.4	48

SUSANNE E AHMARI

#	Article	IF	CITATIONS
19	Strengthened Inputs from Secondary Motor Cortex to Striatum in a Mouse Model of Compulsive Behavior. Journal of Neuroscience, 2019, 39, 2965-2975.	3.6	58
20	Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170023.	4.0	27
21	How can preclinical mouse models be used to gain insight into prefrontal cortex dysfunction in obsessive-compulsive disorder?. Brain and Neuroscience Advances, 2018, 2, 239821281878389.	3.4	7
22	The Role of Response Inhibition in Medicated and Unmedicated Obsessive-Compulsive Disorder Patients: Evidence from the Stop-Signal Task. Depression and Anxiety, 2017, 34, 301-306.	4.1	32
23	Obsessive-compulsive disorder: Insights from animal models. Neuroscience and Biobehavioral Reviews, 2017, 76, 254-279.	6.1	69
24	OCD candidate gene <i>SLC1A1</i> /EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5719-5724.	7.1	46
25	Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior. Neuropsychopharmacology, 2017, 42, 1182-1191.	5.4	29
26	A Corticostriatal Balancing Act Supports Skill Learning. Neuron, 2017, 96, 253-255.	8.1	6
27	PREPULSE INHIBITION DEFICITS ONLY IN FEMALES WITH OBSESSIVE-COMPULSIVE DISORDER. Depression and Anxiety, 2016, 33, 238-246.	4.1	20
28	Prepulse Inhibition Deficits in Obsessive-Compulsive Disorder are More Pronounced in Females. Neuropsychopharmacology, 2016, 41, 2963-2964.	5.4	16
29	A Lack of Serotonin 1B Autoreceptors Results in Decreased Anxiety and Depression-Related Behaviors. Neuropsychopharmacology, 2016, 41, 2941-2950.	5.4	44
30	Using mice to model Obsessive Compulsive Disorder: From genes to circuits. Neuroscience, 2016, 321, 121-137.	2.3	55
31	A Novel Framework for Improving Psychiatric Diagnostic Nosology. , 2016, , .		2
32	Using Optogenetics to Dissect the Neural Circuits Underlying OCD and Related Disorders. Current Treatment Options in Psychiatry, 2015, 2, 297-311.	1.9	10
33	DISSECTING OCD CIRCUITS: FROM ANIMAL MODELS TO TARGETED TREATMENTS. Depression and Anxiety, 2015, 32, 550-562.	4.1	99
34	A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors. Frontiers in Systems Neuroscience, 2015, 9, 171.	2.5	73
35	Hippocampal–prefrontal input supports spatial encoding in working memory. Nature, 2015, 522, 309-314.	27.8	554
36	Distinct Circuits Underlie the Effects of 5-HT1B Receptors on Aggression and Impulsivity. Neuron, 2015, 86, 813-826.	8.1	87

SUSANNE E AHMARI

#	Article	IF	CITATIONS
37	Dopamine D2 Receptors Regulate the Anatomical and Functional Balance of Basal Ganglia Circuitry. Neuron, 2014, 81, 153-164.	8.1	194
38	Assessing neurocognitive function in psychiatric disorders: A roadmap for enhancing consensus. Neurobiology of Learning and Memory, 2014, 115, 10-20.	1.9	19
39	Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Current Opinion in Neurobiology, 2013, 23, 399-406.	4.2	39
40	Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus. Neuron, 2013, 77, 955-968.	8.1	582
41	Repeated Cortico-Striatal Stimulation Generates Persistent OCD-Like Behavior. Science, 2013, 340, 1234-1239.	12.6	420
42	Impaired Sensorimotor Gating in Unmedicated Adults with Obsessive–Compulsive Disorder. Neuropsychopharmacology, 2012, 37, 1216-1223.	5.4	166
43	Flexible Accelerated STOP Tetracycline Operator-Knockin (FAST): A Versatile and Efficient New Gene Modulating System. Biological Psychiatry, 2010, 67, 770-773.	1.3	101
44	Myocarditis During Clozapine Treatment. American Journal of Psychiatry, 2006, 163, 204-208.	7.2	75
45	Knowing a Nascent Synapse When You See It. Neuron, 2002, 34, 333-336.	8.1	60
46	Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neuroscience, 2000, 3, 445-451.	14.8	529
47	Estriol: A potent regulator of TNF and IL-6 expression in a murine model of endotoxemia. Inflammation, 1996, 20, 581-597.	3.8	48