Huihui Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9372016/publications.pdf Version: 2024-02-01

Ηπιπη Οι

#	Article	IF	CITATIONS
1	Bacterial diversity rather than available Cd is the main driver of exoenzyme activity and stoichiometry after soil amendments in mildly contaminated soil. Journal of Soils and Sediments, 2022, 22, 443-456.	1.5	3
2	Natural dissolved organic matter (DOM) affects W(VI) adsorption onto Al (hydr)oxide: Mechanisms and influencing factors. Environmental Research, 2022, 205, 112571.	3.7	9
3	A Universal Synergistic Rule of Cd(II)-Sb(V) Coadsorption to Typical Soil Mineral and Organic Components. Adsorption Science and Technology, 2022, 2022, .	1.5	2
4	Tungsten distribution and vertical migration in soils near a typical abandoned tungsten smelter. Journal of Hazardous Materials, 2022, 429, 128292.	6.5	23
5	Tungsten–humic substances complexation. , 2022, 1, .		3
6	Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation. Environmental Science and Pollution Research, 2021, 28, 7828-7839.	2.7	28
7	Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for cadmium removal. Journal of Cleaner Production, 2021, 281, 125390.	4.6	87
8	Binding of tetracycline on soil phyllosilicates with Cd(II) as affected by pH and mineral type. Journal of Soils and Sediments, 2021, 21, 775-783.	1.5	8
9	Binding of Cd(II) by Amorphous Aluminum Hydroxide-Organophosphorus Coprecipitates: From Macroscopic to Microscopic Investigation. Adsorption Science and Technology, 2021, 2021, 1-8.	1.5	3
10	The long-term effectiveness of ferromanganese biochar in soil Cd stabilization and reduction of Cd bioaccumulation in rice. Biochar, 2021, 3, 499-509.	6.2	29
11	Ferrihydrite–organo composites are a suitable analog for predicting Cd(II)–As(V) coexistence behaviors at the soil solid-liquid interfaces. Environmental Pollution, 2021, 290, 118040.	3.7	27
12	Insights into the removal of Cd and Pb from aqueous solutions by NaOH–EtOH-modified biochar. Environmental Technology and Innovation, 2021, 24, 102031.	3.0	15
13	Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources. Environmental Science and Pollution Research, 2020, 27, 44249-44256.	2.7	18
14	Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W(V), during adsorption to ferrihydrite. Chemical Geology, 2020, 540, 119567.	1.4	31
15	The shuttling effects and associated mechanisms of different types of iron oxide nanoparticles for Cu(II) reduction by Geobacter sulfurreducens. Journal of Hazardous Materials, 2020, 393, 122390.	6.5	13
16	Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains. Chemosphere, 2020, 247, 125850.	4.2	38
17	Bacteria affect Sb(III, V) adsorption and oxidation on birnessite. Journal of Soils and Sediments, 2020, 20, 2418-2425.	1.5	7
18	Application of economic plant for remediation of cadmium contaminated soils: Three mulberry (Moms) Tj ETQo	10 0 0 rgBT	/Overlock 10

Ниіниі Du

#	Article	IF	CITATIONS
19	Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere, 2019, 224, 103-110.	4.2	113
20	Binding of Sb(III) by Sb-tolerant Bacillus cereus cell and cell-goethite composite: implications for Sb mobility and fate in soils and sediments. Journal of Soils and Sediments, 2019, 19, 2850-2858.	1.5	15
21	Insights into Pb(II) binding by Fe/Al hydroxide–microbe composite: XAFS spectroscopy and isothermal titration calorimetry study. Chemical Geology, 2019, 510, 84-90.	1.4	23
22	Safety assessment and application of iron and manganese ore tailings for the remediation of As-contaminated soil. Chemical Engineering Research and Design, 2019, 125, 334-341.	2.7	10
23	Co-adsorption of Cd(II) and Sb(III) by ferrihydrite: a combined XPS and ITC study. Journal of Soils and Sediments, 2019, 19, 1319-1327.	1.5	33
24	How Do Trace Elements Behave In Soil Organo-Mineral Assembles?. , 2019, , .		0
25	Pb sorption on montmorillonite-bacteria composites: A combination study by XAFS, ITC and SCM. Chemosphere, 2018, 200, 427-436.	4.2	37
26	Cd sequestration by bacteria–aluminum hydroxide composites. Chemosphere, 2018, 198, 75-82.	4.2	16
27	Sorption of Pb(II) by Nanosized Ferrihydrite Organo-Mineral Composites Formed by Adsorption versus Coprecipitation. ACS Earth and Space Chemistry, 2018, 2, 556-564.	1.2	63
28	Aging shapes the distribution of copper in soil aggregate size fractions. Environmental Pollution, 2018, 233, 569-576.	3.7	38
29	Sorption of Cu(II) by Al hydroxide organo–mineral coprecipitates: Microcalorimetry and NanoSIMS observations. Chemical Geology, 2018, 499, 165-171.	1.4	23
30	Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria. Environmental Pollution, 2018, 243, 444-452.	3.7	27
31	Fraction and mobility of antimony and arsenic in three polluted soils: A comparison of single extraction and sequential extraction. Chemosphere, 2018, 213, 533-540.	4.2	45
32	Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. Chemosphere, 2018, 207, 404-412.	4.2	113
33	Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicology and Environmental Safety, 2018, 163, 223-229.	2.9	66
34	Copper adsorption on composites of goethite, cells of <i><scp>P</scp>seudomonas putida</i> and humic acid. European Journal of Soil Science, 2017, 68, 514-523.	1.8	24
35	Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species. Environmental Pollution, 2017, 229, 871-878.	3.7	40
36	Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite. Biogeosciences, 2016, 13, 5557-5566.	1.3	21

Ниіниі Du

#	Article	IF	CITATIONS
37	Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites. Scientific Reports, 2016, 6, 19499.	1.6	49
38	Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite. Environmental Pollution, 2016, 218, 168-175.	3.7	71
39	Cadmium adsorption on bacteria–mineral mixtures: effect of naturally occurring ligands. European Journal of Soil Science, 2016, 67, 641-649.	1.8	22