
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371488/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles. Journal of Magnesium and Alloys, 2023, 11, 259-269.                                                                                                       | 5.5 | 8         |
| 2  | Investigations on the tensile deformation of pure Mg and Mg–15Gd alloy by in-situ X-ray synchrotron<br>radiation and visco-plastic self-consistent modeling. Journal of Magnesium and Alloys, 2023, 11,<br>607-613.                                  | 5.5 | 8         |
| 3  | Microstructure, mechanical properties and fracture behaviors of large-scale sand-cast<br>Mg-3Y-2Gd-1Nd-0.4Zr alloy. Journal of Magnesium and Alloys, 2023, 11, 2763-2775.                                                                            | 5.5 | 7         |
| 4  | Revealing the role of Al in the microstructural evolution and creep properties of<br>Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2022, 832, 142358. | 2.6 | 4         |
| 5  | Compressive deformation of as-extruded LPSO-containing Mg alloys at different temperatures.<br>Journal of Materials Research and Technology, 2022, 16, 944-959.                                                                                      | 2.6 | 14        |
| 6  | Effects of Y Additions on the Microstructures and Mechanical Behaviours of as Cast<br>Mg– <i>x</i> Y–0.5Zr Alloys. Advanced Engineering Materials, 2022, 24, .                                                                                       | 1.6 | 4         |
| 7  | Revisiting the tolerance limit of Fe impurity in biodegradable magnesium. Scripta Materialia, 2022, 212, 114509.                                                                                                                                     | 2.6 | 3         |
| 8  | Advances in bioorganic molecules inspired degradation and surface modifications on Mg and its alloys. Journal of Magnesium and Alloys, 2022, 10, 670-688.                                                                                            | 5.5 | 33        |
| 9  | Comparison on Hot Tearing Behavior of Binary Mg–Al, Mg–Y, Mg–Gd, Mg–Zn, and Mg–Ca Alloys.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53,<br>2986-3001.                                          | 1.1 | 7         |
| 10 | Hot deformation behavior and microstructural evolution for dual-phase Mg–9Li–3Al alloys. Journal of Materials Research and Technology, 2022, 19, 3536-3545.                                                                                          | 2.6 | 15        |
| 11 | New strategy to solve the ambient strength-ductility dilemma in precipitation-strengthened Mg-Gd alloys via Li addition. Scripta Materialia, 2022, 220, 114901.                                                                                      | 2.6 | 12        |
| 12 | Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomaterialia, 2021, 121, 695-712.                                                                                                 | 4.1 | 39        |
| 13 | Mechanism of Mn on inhibiting Fe-caused magnesium corrosion. Journal of Magnesium and Alloys, 2021, 9, 676-685.                                                                                                                                      | 5.5 | 29        |
| 14 | Interdiffusion and atomic mobility in hcp Mg–Al–Sn alloys. Journal of Alloys and Compounds, 2021,<br>871, 159517.                                                                                                                                    | 2.8 | 9         |
| 15 | Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. Journal of Alloys and Compounds, 2021, 888, 161507.                                                                                                                | 2.8 | 65        |
| 16 | Improving the Creep Resistance of Elektron21 by Adding AlN/Al Nanoparticles Using the High Shear<br>Dispersion Technique. Minerals, Metals and Materials Series, 2021, , 57-69.                                                                      | 0.3 | 0         |
| 17 | Formation mechanism of the abnormal texture during extrusion in Mg-Y-Sm-Zn-Zr alloy. Journal of Alloys and Compounds, 2020, 821, 153477.                                                                                                             | 2.8 | 32        |
| 18 | Effects of Intermetallic Microstructure on Degradation of Mg-5Nd Alloy. Metallurgical and Materials<br>Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5498-5515.                                                               | 1.1 | 10        |

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effects of heat treatment on the microstructural evolution and creep resistance of Elektron21 alloy<br>and its nanocomposite. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 789, 139669.                                  | 2.6 | 7         |
| 20 | Effect of biaxial compressive stress state on the microstructure evolution and deformation<br>compatibility of rolled sheet Mg alloy AZ31 at room temperature. Materials Science & Engineering<br>A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139599. | 2.6 | 22        |
| 21 | Mechanical behaviors of novel multiple principal elements CuAl10Fe5Ni5Mn1.2Âwt% with micro-nano structures. Journal of Alloys and Compounds, 2020, 843, 155993.                                                                                                                          | 2.8 | 8         |
| 22 | Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. Journal of Magnesium and Alloys, 2020, 8, 849-859.                                                                                                                       | 5.5 | 25        |
| 23 | Achieving enhanced mechanical properties in Mg-Gd-Y-Zn-Mn alloy by altering dynamic<br>recrystallization behavior via pre-ageing treatment. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2020, 790, 139635.                    | 2.6 | 47        |
| 24 | Roles of Nd and Mn in a new creep-resistant magnesium alloy. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 2020, 779, 139152.                                                                                                   | 2.6 | 25        |
| 25 | Individual/synergistic effects of Al and AlN on the microstructural evolution and creep resistance of<br>Elektron21 alloy. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 777, 139072.                                     | 2.6 | 10        |
| 26 | In situ compressive investigations on the effects of solid solution Gd on the texture and lattice<br>strain evolution of Mg. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2020, 774, 138938.                                   | 2.6 | 9         |
| 27 | Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting. Journal of Materials Science and Technology, 2020, 52, 72-82.                                                                                                     | 5.6 | 30        |
| 28 | Grain refinements of magnesium alloys inoculated by additions of external SiC particles. IOP<br>Conference Series: Materials Science and Engineering, 2019, 529, 012049.                                                                                                                 | 0.3 | 3         |
| 29 | Influence of Torsion on Precipitation and Hardening Effects during Aging of an Extruded AZ91 Alloy.<br>Journal of Materials Engineering and Performance, 2019, 28, 4403-4414.                                                                                                            | 1.2 | 6         |
| 30 | Influences of Al and high shearing dispersion technique on the microstructure and creep resistance<br>of Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn alloy. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2019, 764, 138215.                 | 2.6 | 11        |
| 31 | Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca<br>alloy. Acta Materialia, 2019, 181, 185-199.                                                                                                                                         | 3.8 | 71        |
| 32 | Effects of samarium content on microstructure and mechanical properties of Mg–0.5Zn–0.5Zr alloy.<br>Journal of Materials Science and Technology, 2019, 35, 1368-1377.                                                                                                                    | 5.6 | 66        |
| 33 | Abnormal extrusion texture and reversed yield asymmetry in a Mg–Y-Sm-Zn-Zr alloy. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760,<br>426-430.                                                                          | 2.6 | 27        |
| 34 | Calculation of Schmid factor in Mg alloys: Influence of stress state. Scripta Materialia, 2019, 171, 31-35.                                                                                                                                                                              | 2.6 | 68        |
| 35 | Influences of AIN/AI Nanoparticles on the Creep Properties of Elektron21 Prepared by High Shear<br>Dispersion Technology. Jom, 2019, 71, 2245-2252.                                                                                                                                      | 0.9 | 2         |
| 36 | Unexpected Expansion Behavior of Mg-Al Alloys During Isothermal Ageing. Jom, 2019, 71, 2906-2912.                                                                                                                                                                                        | 0.9 | 2         |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. Journal of Alloys and Compounds, 2019, 795, 436-445.                                                                                                  | 2.8  | 43        |
| 38 | Microscopic deformation compatibility during biaxial tension in AZ31 Mg alloy rolled sheet at room<br>temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2019, 756, 1-10.                               | 2.6  | 13        |
| 39 | Enhancing the creep resistance of AlN/Al nanoparticles reinforced Mg-2.85Nd-0.92Gd-0.41Zr-0.29Zn<br>alloy by a high shear dispersion technique. Materials Science & Engineering A: Structural<br>Materials: Properties, Microstructure and Processing, 2019, 755, 18-27. | 2.6  | 29        |
| 40 | Microstructures, Corrosion and Mechanical Properties of Mg–Si Alloys as Biodegradable Implant<br>Materials. Minerals, Metals and Materials Series, 2019, , 151-157.                                                                                                      | 0.3  | 1         |
| 41 | Influences of SiC Particle Additions on the Grain Refinement of Mg–Zn Alloys. Minerals, Metals and<br>Materials Series, 2019, , 331-338.                                                                                                                                 | 0.3  | 1         |
| 42 | Microstructures and mechanical properties of a hot-extruded Mgâ^'8Gdâ^'3Ybâ^'1.2Znâ^'0.5Zr (wt%) alloy.<br>Journal of Alloys and Compounds, 2019, 776, 666-678.                                                                                                          | 2.8  | 48        |
| 43 | Strengthening and ductilizing of magnesium alloying with heavy rare earth elements. MATEC Web of Conferences, 2018, 188, 03021.                                                                                                                                          | 0.1  | 2         |
| 44 | Current development of creep-resistant magnesium cast alloys: A review. Materials and Design, 2018, 155, 422-442.                                                                                                                                                        | 3.3  | 151       |
| 45 | The effect of Y addition on recrystallization and mechanical properties of Mg–6Zn–xY–0.5Ce–0.4Zr<br>alloys. Vacuum, 2018, 155, 445-455.                                                                                                                                  | 1.6  | 39        |
| 46 | Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure<br>of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. Journal of Materials Science, 2017, 52, 6670-6686                                                                   | .1.7 | 24        |
| 47 | Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium. Materials Science and Engineering C, 2017, 75, 1351-1358.                                                                                                   | 3.8  | 28        |
| 48 | Recent research and developments on wrought magnesium alloys. Journal of Magnesium and Alloys, 2017, 5, 239-253.                                                                                                                                                         | 5.5  | 472       |
| 49 | Effects of Mn and Zn Solutes on Grain Refinement of Commercial Pure Magnesium. Minerals, Metals<br>and Materials Series, 2017, , 191-198.                                                                                                                                | 0.3  | 3         |
| 50 | Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces. Journal of Nanomaterials, 2016, 2016, 1-9.                                                                                                                                   | 1.5  | 5         |
| 51 | Unexpected formation of hydrides in heavy rare earth containing magnesium alloys. Journal of<br>Magnesium and Alloys, 2016, 4, 173-180.                                                                                                                                  | 5.5  | 37        |
| 52 | Microstructure evolution of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy during deformation and its<br>effect on strengthening. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2016, 657, 259-268.                   | 2.6  | 16        |
| 53 | Hot tearing characteristics of Mg–2Ca–xZn alloys. Journal of Materials Science, 2016, 51, 2687-2704.                                                                                                                                                                     | 1.7  | 28        |
| 54 | An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg–1Sr alloy. Acta<br>Biomaterialia, 2016, 29, 455-467.                                                                                                                                      | 4.1  | 85        |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 2016, 187, 20-33.                                                                                                                                 | 2.6 | 219       |
| 56 | Atomic Force Microscopy Measurement of Slip on Smooth Hydrophobic Surfaces and Possible<br>Artifacts. Journal of Physical Chemistry C, 2015, 119, 12531-12537.                                                                                             | 1.5 | 13        |
| 57 | Effect of Zn addition on hot tearing behaviour of Mg–0.5Ca–xZn alloys. Materials and Design, 2015, 87,<br>157-170.                                                                                                                                         | 3.3 | 39        |
| 58 | An Investigation on Hot Tearing of Mg-4.5Zn-(0.5Zr) Alloys with Y Additions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2108-2118.                                                                   | 1.1 | 30        |
| 59 | High temperature mechanical behavior of an extruded Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2015, 645, 213-224.                                | 2.6 | 22        |
| 60 | Mechanical properties and corrosion behavior of Mg–Gd–Ca–Zr alloys for medical applications.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 38-48.                                                                               | 1.5 | 46        |
| 61 | Hot Tearing Susceptibility of Mg-Ca Binary Alloys. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2015, 46, 6003-6017.                                                                                          | 1.1 | 23        |
| 62 | Microstructural evolution and mechanical properties of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr alloy prepared via pre-ageing and hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 624, 23-31. | 2.6 | 62        |
| 63 | Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 121-130.                            | 2.6 | 97        |
| 64 | Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys. Journal of<br>Magnesium and Alloys, 2014, 2, 1-7.                                                                                                                 | 5.5 | 74        |
| 65 | Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. Journal of<br>Materials Science, 2014, 49, 353-362.                                                                                                                     | 1.7 | 42        |
| 66 | Investigations on microstructures, mechanical and corrosion properties of Mg–Gd–Zn alloys.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2014, 595, 224-234.                                   | 2.6 | 120       |
| 67 | Understanding effects of microstructural inhomogeneity on creep response – New approaches to improve the creep resistance in magnesium alloys. Journal of Magnesium and Alloys, 2014, 2, 124-132.                                                          | 5.5 | 24        |
| 68 | Hot Tearing Characteristics of Binary Mg-Gd Alloy Castings. Metallurgical and Materials Transactions<br>A: Physical Metallurgy and Materials Science, 2013, 44, 2285-2298.                                                                                 | 1.1 | 41        |
| 69 | Hot tearing susceptibility of binary Mg–Y alloy castings. Materials & Design, 2013, 47, 90-100.                                                                                                                                                            | 5.1 | 76        |
| 70 | Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomaterialia, 2013, 9, 8499-8508.                                                                                                                | 4.1 | 92        |
| 71 | Effects of Sn segregation and precipitates on creep response of Mg‣n alloys. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 308-315.                                                                                              | 1.7 | 16        |
| 72 | Element distribution in the corrosion layer and cytotoxicity of alloy Mg–10Dy during in vitro biodegradation. Acta Biomaterialia, 2013, 9, 8475-8487.                                                                                                      | 4.1 | 87        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Compression-creep response of magnesium alloy DieMag422 containing barium compared with the commercial creep-resistant alloys AE42 and MRI230D. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 430-438. | 2.6 | 58        |
| 74 | Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2013, 578, 346-353.                                        | 2.6 | 63        |
| 75 | Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy. Surface and Coatings Technology, 2012, 213, 48-58.                                                                                                    | 2.2 | 57        |
| 76 | Hot Tearing Susceptibility of Magnesium–Gadolinium Binary Alloys. Transactions of the Indian<br>Institute of Metals, 2012, 65, 701-706.                                                                                                                                 | 0.7 | 7         |
| 77 | High ductile as-cast Mg–RE based alloys at room temperature. Materials Letters, 2012, 83, 209-212.                                                                                                                                                                      | 1.3 | 19        |
| 78 | Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg–Dy alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 36-44.                                                                                  | 1.5 | 59        |
| 79 | Identification of unexpected hydrides in Mg–20 wt% Dy alloy by high-brilliance synchrotron radiation.<br>Journal of Applied Crystallography, 2012, 45, 17-21.                                                                                                           | 1.9 | 17        |
| 80 | Development of High Performance Singleâ€Phase Solid Solution Magnesium Alloy at Low Temperature.<br>Advanced Engineering Materials, 2012, 14, 178-184.                                                                                                                  | 1.6 | 9         |
| 81 | Strain induced GdH2 precipitate in Mg–Gd based alloys. Intermetallics, 2011, 19, 382-389.                                                                                                                                                                               | 1.8 | 55        |
| 82 | Mechanical and corrosion properties of binary Mg–Dy alloys for medical applications. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1827-1834.                                                                       | 1.7 | 86        |
| 83 | Mechanism of grain refinement of Mg–Al alloys by SiC inoculation. Scripta Materialia, 2011, 64, 793-796.                                                                                                                                                                | 2.6 | 72        |
| 84 | Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surface and Coatings Technology, 2011, 205, 3347-3355.                                                                              | 2.2 | 152       |
| 85 | Influence of composition on hot tearing in binary Mg–Zn alloys. International Journal of Cast Metals<br>Research, 2011, 24, 170-176.                                                                                                                                    | 0.5 | 52        |
| 86 | Investigations on Hot Tearing of Mg-Zn-(Al) Alloys. , 2011, , 125-130.                                                                                                                                                                                                  |     | 2         |
| 87 | Properties and processing of magnesium-tin-calcium alloys. Metallic Materials, 2011, 49, 163-177.                                                                                                                                                                       | 0.2 | 14        |
| 88 | Preparation and properties of high purity Mg–Y biomaterials. Biomaterials, 2010, 31, 398-403.                                                                                                                                                                           | 5.7 | 170       |
| 89 | Magnesium alloys as implant materials – Principles of property design for Mg–RE alloysâ~†. Acta<br>Biomaterialia, 2010, 6, 1714-1725.                                                                                                                                   | 4.1 | 503       |
| 90 | Bolt Load Retention and Creep Response of AS41 Alloyed with 0.15 % Ca. SAE International Journal of<br>Materials and Manufacturing, 2010, 3, 202-210.                                                                                                                   | 0.3 | 0         |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Microstructure and corrosion behavior of Mg-Sn-Ca alloys after extrusion. Transactions of<br>Nonferrous Metals Society of China, 2009, 19, 40-44.                                                                                       | 1.7 | 62        |
| 92  | Effects of segregation of primary alloying elements on the creep response in magnesium alloys.<br>Scripta Materialia, 2008, 58, 894-897.                                                                                                | 2.6 | 9         |
| 93  | Creep behavior of AE42 based hybrid composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 268-276.                                                             | 2.6 | 32        |
| 94  | Investigations on thermal fatigue of aluminum- and magnesium-alloy based composites. International<br>Journal of Fatigue, 2006, 28, 1399-1405.                                                                                          | 2.8 | 20        |
| 95  | Intermetallics in Magnesium Alloys. Advanced Engineering Materials, 2006, 8, 235-240.                                                                                                                                                   | 1.6 | 204       |
| 96  | Microstructural Investigations of the Mg-Sn-xCa System. Advanced Engineering Materials, 2006, 8, 359-364.                                                                                                                               | 1.6 | 125       |
| 97  | Tensile and compressive creep behaviour of Al2O3 (Saffil®) short fiber reinforced magnesium alloy<br>AE42. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2005, 410-411, 85-88. | 2.6 | 39        |
| 98  | Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites. Acta Materialia, 2005, 53, 3913-3923.                                                                                                   | 3.8 | 18        |
| 99  | Micro-Strain Induced by Thermal Cycling in Short Fiber Reinforced AlSi12CuMgNi Piston Alloy and AE42 Magnesium Alloy. Advanced Engineering Materials, 2004, 6, 883-888.                                                                 | 1.6 | 6         |
| 100 | Preparation and mechanical properties of large-ingot Fe3Al-based alloys. Journal of Materials<br>Processing Technology, 2004, 146, 175-180.                                                                                             | 3.1 | 11        |
| 101 | Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys. Composites Part A: Applied Science and Manufacturing, 2004, 35, 249-263.                                                                                         | 3.8 | 32        |
| 102 | Mechanical Properties and Corrosion Performance of AZ-Mg Alloy Modified with Ca and Sr. SAE<br>International Journal of Materials and Manufacturing, 0, 1, 103-110.                                                                     | 0.3 | 3         |
| 103 | A Unique Quenching and Deformation Dilatometer for Combined In Situ Neutron Diffraction Analysis of Engineering Materials. Advanced Engineering Materials, 0, , 2100163.                                                                | 1.6 | 1         |