Guy VergÃ"res

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371244/publications.pdf

Version: 2024-02-01

37	1,527	19	36
papers	citations	h-index	g-index
38	38	38	2500 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget, 2015, 6, 13858-13898.	0.8	195
2	Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Molecular Nutrition and Food Research, 2019, 63, e1800384.	1.5	173
3	Dairy products and inflammation: A review of the clinical evidence. Critical Reviews in Food Science and Nutrition, 2017, 57, 2497-2525.	5 . 4	149
4	Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proceedings of the Nutrition Society, 2017, 76, 619-627.	0.4	93
5	Fermented Food and Non-Communicable Chronic Diseases: A Review. Nutrients, 2018, 10, 448.	1.7	85
6	Probiotic yogurt and acidified milk similarly reduce postprandial inflammation and both alter the gut microbiota of healthy, young men. British Journal of Nutrition, 2017, 117, 1312-1322.	1.2	81
7	A scheme for a flexible classification of dietary and health biomarkers. Genes and Nutrition, 2017, 12, 34.	1.2	76
8	Guidelines for Biomarker of Food Intake Reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery. Genes and Nutrition, 2018, 13, 3.	1.2	71
9	ldentification of Urinary Food Intake Biomarkers for Milk, Cheese, and Soy-Based Drink by Untargeted GC-MS and NMR in Healthy Humans. Journal of Proteome Research, 2017, 16, 3321-3335.	1.8	60
10	Metabolic Footprinting of Fermented Milk Consumption in Serum of Healthy Men. Journal of Nutrition, 2018, 148, 851-860.	1.3	43
11	Biomarker of food intake for assessing the consumption of dairy and egg products. Genes and Nutrition, 2018, 13, 26.	1.2	40
12	Modulation of the peripheral blood transcriptome by the ingestion of probiotic yoghurt and acidified milk in healthy, young men. PLoS ONE, 2018, 13, e0192947.	1.1	40
13	GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Molecular Nutrition and Food Research, 2019, 63, e1900677.	1.5	39
14	A Dose-Response Strategy Reveals Differences between Normal-Weight and Obese Men in Their Metabolic and Inflammatory Responses to a High-Fat Meal. Journal of Nutrition, 2014, 144, 1517-1523.	1.3	38
15	Inflammatory and metabolic responses to high-fat meals with and without dairy products in men. British Journal of Nutrition, 2015, 113, 1853-1861.	1.2	38
16	GC-MS Based Metabolomics and NMR Spectroscopy Investigation of Food Intake Biomarkers for Milk and Cheese in Serum of Healthy Humans. Metabolites, 2018, 8, 26.	1.3	38
17	Detection of lactose in products with low lactose content. International Dairy Journal, 2018, 83, 17-19.	1.5	30
18	Trimethylamine-N-Oxide Postprandial Response in Plasma and Urine Is Lower After Fermented Compared to Non-Fermented Dairy Consumption in Healthy Adults. Nutrients, 2020, 12, 234.	1.7	27

#	Article	IF	CITATIONS
19	Postprandial blood cell transcriptomics in response to the ingestion of dairy products by healthy individuals. Journal of Nutritional Biochemistry, 2012, 23, 1701-1715.	1.9	25
20	A systematic review to identify biomarkers of intake for fermented food products. Genes and Nutrition, 2021, 16, 5.	1.2	21
21	The NutriChip project – translating technology into nutritional knowledge. British Journal of Nutrition, 2012, 108, 762-768.	1.2	18
22	Blood lactose after dairy product intake in healthy men. British Journal of Nutrition, 2017, 118, 1070-1077.	1.2	18
23	Nutrigenomics – Linking food to human metabolism. Trends in Food Science and Technology, 2013, 31, 6-12.	7.8	14
24	The role of foodomics to understand the digestion/bioactivity relationship of food. Current Opinion in Food Science, 2018, 22, 67-73.	4.1	14
25	Identification of Milk and Cheese Intake Biomarkers in Healthy Adults Reveals High Interindividual Variability of Lewis System–Related Oligosaccharides. Journal of Nutrition, 2020, 150, 1058-1067.	1.3	14
26	Development of Personalized Nutrition: Applications in Lactose Intolerance Diagnosis and Management. Nutrients, 2021, 13, 1503.	1.7	13
27	Assessment of lactase activity in humans by measurement of galactitol and galactonate in serum and urine after milk intake. American Journal of Clinical Nutrition, 2019, 109, 470-477.	2.2	12
28	Caloric dose-responsive genes in blood cells differentiate the metabolic status of obese men. Journal of Nutritional Biochemistry, 2017, 43, 156-165.	1.9	11
29	The postprandial metabolome — a source of Nutritional Biomarkers of Health. Current Opinion in Food Science, 2017, 16, 67-73.	4.1	10
30	Nutrivolatilomics of Urinary and Plasma Samples to Identify Candidate Biomarkers after Cheese, Milk, and Soy-Based Drink Intake in Healthy Humans. Journal of Proteome Research, 2020, 19, 4019-4033.	1.8	9
31	Prevalence of fermented foods in the Dutch adult diet and validation of a food frequency questionnaire for estimating their intake in the NQplus cohort. BMC Nutrition, 2020, 6, 69.	0.6	8
32	Discriminating Dietary Responses by Combining Transcriptomics and Metabolomics Data in Nutrition Intervention Studies. Molecular Nutrition and Food Research, 2021, 65, e2000647.	1.5	7
33	Postprandial Responses on Serum Metabolome to Milk and Yogurt Intake in Young and Older Men. Frontiers in Nutrition, 2022, 9, .	1.6	5
34	Serum Metabolites Responding in a Dose-Dependent Manner to the Intake of a High-Fat Meal in Normal Weight Healthy Men Are Associated with Obesity. Metabolites, 2021, 11, 392.	1.3	4
35	Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men. Nutrients, 2021, 13, 1905.	1.7	4
36	Evaluating the Robustness of Biomarkers of Dairy Food Intake in a Free-Living Population Using Singleand Multi-Marker Approaches. Metabolites, 2021, 11, 395.	1.3	4

 #	Article	IF	CITATIONS
37	Postprandial response of the blood metabolome and transcriptome of normal weight and obese men to increasing doses of a meal. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0