Javier Garcia-Sancho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MANDIBULAR BONE REGENERATION WITH AUTOLOGOUS ADIPOSE-DERIVED MESENCHYMAL STEM CELLS AND CORALLINE HYDROXYAPATITE: EXPERIMENTAL STUDY IN RATS. British Journal of Oral and Maxillofacial Surgery, 2021, , .	0.4	2
2	Treatment of Degenerative Disc Disease With Allogeneic Mesenchymal Stem Cells: Long-term Follow-up Results. Transplantation, 2021, 105, e25-e27.	0.5	12
3	Long-term efficacy of autologous bone marrow mesenchymal stromal cells for treatment of knee osteoarthritis. Journal of Translational Medicine, 2021, 19, 506.	1.8	7
4	Bone regeneration with autologous adipose-derived mesenchymal stem cells: A reliable experimental model in rats. MethodsX, 2020, 7, 101137.	0.7	2
5	Direct monitoring of ER Ca2+ dynamics reveals that Ca2+ entry induces ER-Ca2+ release in astrocytes. Pflugers Archiv European Journal of Physiology, 2020, 472, 439-448.	1.3	12
6	Imaging of Endoplasmic Reticulum Ca2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca2+ Indicator. Frontiers in Endocrinology, 2020, 11, 615777.	1.5	3
7	Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in <i>Drosophila</i> . Journal of Cell Science, 2020, 133, .	1.2	10
8	A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency. Translational Research, 2019, 206, 18-40.	2.2	81
9	Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 222-229.	0.7	35
10	Caffeine chelates calcium in the lumen of the endoplasmic reticulum. Biochemical Journal, 2018, 475, 3639-3649.	1.7	9
11	Transcription factor induced conversion of human fibroblasts towards the hair cell lineage. PLoS ONE, 2018, 13, e0200210.	1.1	26
12	Using aequorin probes to measure Ca2+ in intracellular organelles. Cell Calcium, 2017, 64, 3-11.	1.1	20
13	A Microplate-Based Bioluminescence Assay of Mitochondrial Calcium Uptake. Methods in Molecular Biology, 2017, 1567, 245-253.	0.4	2
14	Measuring Ca 2+ inside intracellular organelles with luminescent and fluorescent aequorin-based sensors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 894-899.	1.9	11
15	Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease. Transplantation Direct, 2017, 3, e205.	0.8	45
16	Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. Molecular Cell, 2017, 67, 711-723.e7.	4.5	99
17	Intervertebral Disc Repair by Allogeneic Mesenchymal Bone Marrow Cells. Transplantation, 2017, 101, 1945-1951.	0.5	171
18	GFP-Aequorin Protein Sensor for ExÂVivo and InÂVivo Imaging of Ca 2+ Dynamics in High-Ca 2+ Organelles. Cell Chemical Biology, 2016, 23, 738-745.	2.5	30

JAVIER GARCIA-SANCHO

#	Article	IF	CITATIONS
19	Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells. Transplantation, 2015, 99, 1681-1690.	0.5	459
20	Single-Cell Phenotypic Characterization of Human Pituitary GHomas and Non-Functioning Adenomas Based on Hormone Content and Calcium Responses to Hypothalamic Releasing Hormones. Frontiers in Oncology, 2015, 5, 124.	1.3	5
21	Stem Cell Therapy for Corneal Epithelium Regeneration following Good Manufacturing and Clinical Procedures. BioMed Research International, 2015, 2015, 1-19.	0.9	54
22	A new low-Ca2+ affinity GAP indicator to monitor high Ca2+ in organelles by luminescence. Cell Calcium, 2015, 58, 558-564.	1.1	17
23	Differential calcium handling by the <i>cis</i> and <i>trans</i> regions of the Golgi apparatus. Biochemical Journal, 2015, 466, 455-465.	1.7	22
24	The distribution of mitochondria and endoplasmic reticulum in relation with secretory sites in chromaffin cells. Journal of Cell Science, 2014, 127, 5105-14.	1.2	34
25	GAP, an aequorin-based fluorescent indicator for imaging Ca ²⁺ in organelles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2584-2589.	3.3	64
26	The coupling of plasma membrane calcium entry to calcium uptake by endoplasmic reticulum and mitochondria. Journal of Physiology, 2014, 592, 261-268.	1.3	39
27	Treatment of Knee Osteoarthritis With Autologous Mesenchymal Stem Cells. Transplantation, 2014, 97, e66-e68.	0.5	128
28	Treatment of Knee Osteoarthritis With Autologous Mesenchymal Stem Cells. Transplantation, 2013, 95, 1535-1541.	0.5	385
29	The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nature Communications, 2012, 3, 814.	5.8	84
30	Response to "Overenthusiastic Interpretations of a Nonetheless Promising Studyâ€: Transplantation, 2012, 93, e7-e9.	0.5	0
31	Generation of inner ear sensory cells from bone marrow-derived human mesenchymal stem cells. Regenerative Medicine, 2012, 7, 769-783.	0.8	34
32	New Aspects of the Contribution of ER to SOCE Regulation. , 2012, , 153-162.		0
33	Mitochondria and chromaffin cell function. Pflugers Archiv European Journal of Physiology, 2012, 464, 33-41.	1.3	23
34	Cytosolic organelles shape calcium signals and exo–endocytotic responses of chromaffin cells. Cell Calcium, 2012, 51, 309-320.	1.1	22
35	Privileged coupling between Ca2+ entry through plasma membrane store-operated Ca2+ channels and the endoplasmic reticulum Ca2+ pump. Molecular and Cellular Endocrinology, 2012, 353, 37-44.	1.6	46
36	Intervertebral Disc Repair by Autologous Mesenchymal Bone Marrow Cells: A Pilot Study. Transplantation, 2011, 92, 822-828.	0.5	393

#	Article	IF	CITATIONS
37	Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochemical Journal, 2011, 435, 227-235.	1.7	20
38	Nuclear Ca2+ signalling. Cell Calcium, 2011, 49, 280-289.	1.1	56
39	Calcium entry-calcium refilling (CECR) coupling between store-operated Ca2+ entry and sarco/endoplasmic reticulum Ca2+-ATPase. Cell Calcium, 2011, 49, 153-161.	1.1	38
40	Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochemical Journal, 2011, 437, 469-475.	1.7	46
41	The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) is the third element in capacitative calcium entry. Cell Calcium, 2010, 47, 412-418.	1.1	87
42	Ca2+ Imaging of Intracellular Organelles: Mitochondria. Neuromethods, 2010, , 169-188.	0.2	0
43	The Endoplasmic Reticulum of Dorsal Root Ganglion Neurons Contains Functional TRPV1 Channels. Journal of Biological Chemistry, 2009, 284, 32591-32601.	1.6	76
44	Effect of cytosolic Mg2+ on mitochondrial Ca2+ signaling. Pflugers Archiv European Journal of Physiology, 2009, 457, 941-954.	1.3	30
45	Bioluminescence Imaging of Calcium Oscillations Inside Intracellular Organelles. Methods in Molecular Biology, 2009, 574, 203-214.	0.4	14
46	Red and green aequorins for simultaneous monitoring of Ca2+ signals from two different organelles. Pflugers Archiv European Journal of Physiology, 2008, 455, 961-970.	1.3	54
47	Glucose induces synchronous mitochondrial calcium oscillations in intact pancreatic islets. Cell Calcium, 2008, 43, 39-47.	1.1	24
48	Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells. Cell Calcium, 2008, 43, 205-214.	1.1	28
49	Rapid Changes in Anterior Pituitary Cell Phenotypes in Male and Female Mice after Acute Cold Stress. Endocrinology, 2008, 149, 2159-2167.	1.4	13
50	Bioluminescence imaging of mitochondrial Ca2+dynamics in soma and neurites of individual adult mouse sympathetic neurons. Journal of Physiology, 2007, 580, 385-395.	1.3	42
51	Cell proliferation depends on mitochondrial Ca2+uptake: inhibition by salicylate. Journal of Physiology, 2006, 571, 57-73.	1.3	74
52	Calcium microdomains in mitochondria and nucleus. Cell Calcium, 2006, 40, 513-525.	1.1	92
53	Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells. Physiological Reviews, 2006, 86, 1093-1131.	13.1	309
54	Bioluminescence imaging of nuclear calcium oscillations in intact pancreatic islets of Langerhans from the mouse. Cell Calcium, 2005, 38, 131-139.	1.1	19

#	Article	IF	CITATIONS
55	Changes in Expression of Hypothalamic Releasing Hormone Receptors in Individual Rat Anterior Pituitary Cells during Maturation, Puberty and Senescence. Endocrinology, 2005, 146, 4627-4634.	1.4	21
56	Experimental and Clinical Regenerative Capability of Human Bone Marrow Cells After Myocardial Infarction. Circulation Research, 2004, 95, 742-748.	2.0	449
57	Anterior pituitary thyrotropes are multifunctional cells. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E1166-E1170.	1.8	39
58	Phenotypic characterization of multi-functional somatotropes, mammotropes and gonadotropes of the mouse anterior pituitary. Pflugers Archiv European Journal of Physiology, 2004, 449, 257-64.	1.3	11
59	Fura-2 antagonises calcium-induced calcium release. Cell Calcium, 2003, 33, 27-35.	1.1	30
60	Multifunctional Cells of Mouse Anterior Pituitary Reveal a Striking Sexual Dimorphism. Journal of Physiology, 2003, 549, 835-843.	1.3	41
61	Calcium Influx through Receptor-operated Channel Induces Mitochondria-triggered Paraptotic Cell Death. Journal of Biological Chemistry, 2003, 278, 14134-14145.	1.6	109
62	Redistribution of Ca2+among cytosol and organella during stimulation of bovine chromaffin cells. FASEB Journal, 2002, 16, 343-353.	0.2	114
63	Dampening of Cytosolic Ca2+ Oscillations on Propagation to Nucleus. Journal of Biological Chemistry, 2002, 277, 50226-50229.	1.6	31
64	An extracellular sulfhydryl group modulates background Na+ conductance and cytosolic Ca2+ in pituitary cells. American Journal of Physiology - Cell Physiology, 2002, 282, C864-C872.	2.1	3
65	Subcellular Ca ²⁺ Dynamics Measured with Targeted Aequorin in Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 634-640.	1.8	5
66	Direct actions of adrenergic agents on rat anterior pituitary cells. Pflugers Archiv European Journal of Physiology, 2001, 442, 834-841.	1.3	8
67	Control of secretion by mitochondria depends on the size of the local [Ca2+] after chromaffin cell stimulation. European Journal of Neuroscience, 2001, 13, 2247-2254.	1.2	21
68	Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biology, 2000, 2, 57-61.	4.6	444
69	Differential calcium responses to the pituitary adenylate cyclase-activating polypeptide (PACAP) in the five main cell types of rat anterior pituitary. Pflugers Archiv European Journal of Physiology, 2000, 440, 685-691.	1.3	19
70	Subcellular Ca ²⁺ Dynamics. Physiology, 1999, 14, 161-168.	1.6	8
71	Ca2+-induced Ca2+ Release in Chromaffin Cells Seen from inside the ER with Targeted Aequorin. Journal of Cell Biology, 1999, 144, 241-254.	2.3	170
72	Subcellular Ca(2+) Dynamics. News in Physiological Sciences: an International Journal of Physiology Produced Jointly By the International Union of Physiological Sciences and the American Physiological Society, 1999, 14, 161-168.	1.0	12

#	Article	IF	CITATIONS
73	Functional measurements of [Ca2+] in the endoplasmic reticulum using a herpes virus to deliver targeted aequorin. Cell Calcium, 1998, 24, 87-96.	1.1	73
74	Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism. Biochemical Journal, 1997, 323, 281-287.	1.7	64
75	Functional ATP receptors in rat anterior pituitary cells. American Journal of Physiology - Cell Physiology, 1997, 273, C1963-C1971.	2.1	34
76	Mechanisms for stimulation of rat anterior pituitary cells by arginine and other amino acids. Journal of Physiology, 1997, 502, 421-431.	1.3	28
77	Caffeine-induced oscillations of cytosolic Ca2+ in GH3 pituitary cells are not due to Ca2+ release from intracellular stores but to enhanced Ca2+ influx through voltage-gated Ca2+ channels. Pflugers Archiv European Journal of Physiology, 1996, 431, 371-378.	1.3	17
78	Functional glutamate receptors in a subpopulation of anterior pituitary cells. FASEB Journal, 1996, 10, 654-660.	0.2	68
79	Mechanisms for Synchronous Calcium Oscillations in Cultured Rat Cerebellar Neurons. European Journal of Neuroscience, 1996, 8, 192-201.	1.2	41
80	Capacitative Ca2+ entry contributes to the Ca2+ influx induced by thyrotropin-releasing hormone (TRH) in GH3 pituitary cells. Pflugers Archiv European Journal of Physiology, 1995, 430, 923-935.	1.3	54
81	Permeation by zinc of bovine chromaffin cell calcium channels: relevance to secretion. Pflugers Archiv European Journal of Physiology, 1994, 429, 231-239.	1.3	27
82	The role of the inwardly rectifying K+ current in resting potential and thyrotropin-releasing-hormone-induced changes in cell excitability of GH3 rat anterior pituitary cells. Pflugers Archiv European Journal of Physiology, 1994, 426, 221-230.	1.3	35
83	Effects of extremely-law-frequency electromagnetic fields on ion transport in several mammalian cells. Bioelectromagnetics, 1994, 15, 579-588.	0.9	43
84	Agonist-induced Ca2+ influx in human neutrophils is not mediated by production of inositol polyphosphates but by emptying of the intracellular Ca2+ stores. Biochemical Society Transactions, 1994, 22, 809-813.	1.6	14
85	The pathway for refilling intracellular Ca2+ stores passes through the cytosol in human leukaemia cells. Pflugers Archiv European Journal of Physiology, 1993, 424, 465-469.	1.3	9
86	The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines. European Journal of Pharmacology, 1993, 247, 199-207.	2.7	59
87	Comparative effects of cytochrome P-450 inhibitors on Ca2+ and Mn2+ entry induced by agonists or by emptying the Ca2+ stores of human neutrophils. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1177, 127-133.	1.9	33
88	Cytochrome P450 may regulate plasma membrane Ca 2+ permeability according to the filling state of the intracellular Ca 2+ stores. FASEB Journal, 1992, 6, 786-792.	0.2	122
89	Inhibition of voltageâ€gated Ca 2+ entry into GH 3 and chromaffin cells by imidazole antimycotics and other cytochrome P450 blockers. FASEB Journal, 1992, 6, 2742-2747.	0.2	93
90	Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Archiv European Journal of Physiology, 1991, 418, 417-422.	1.3	329

JAVIER GARCIA-SANCHO

#	Article	IF	CITATIONS
91	Intracellular Ca2+ potentiates Na+ /H+ exchange and cell differentiation induced by phorbol ester in U937 cells. FEBS Journal, 1989, 183, 709-714.	0.2	31
92	Activation by calcium of AMP deaminase from the human red cell. FEBS Letters, 1989, 244, 417-420.	1.3	9
93	[6] Measurement and control of intracellular calcium in intact red cells. Methods in Enzymology, 1989, 173, 100-112.	0.4	20
94	[22] Preparation and properties of one-step inside-out vesicles from red cell membranes. Methods in Enzymology, 1989, 173, 368-376.	0.4	5
95	Receptor-operated calcium channels in human platelets. Biochemical Society Transactions, 1989, 17, 980-982.	1.6	24
96	Ca2+-Activated Potassium Channels. , 1989, , 201-231.		1
97	An estimate of the number of Ca2+-dependent K+ channels in the human red cell. Biochimica Et Biophysica Acta - Biomembranes, 1987, 903, 543-546.	1.4	23
98	Leiurus quinquestriatus venom inhibits different kinds of Ca2+-dependent K+ channels. Biochimica Et Biophysica Acta - Biomembranes, 1986, 856, 403-407.	1.4	48
99	Analysis of the all or nothing behaviour of Ca-dependent K channels in one-step inside-out vesicles from human red cell membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 859, 56-60.	1.4	6
100	Inhibition of Ca2+-dependent K+ channels by lead in one-step inside-out vesicles from human red cell membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 857, 291-294.	1.4	6
101	The role of calmodulin on Ca2+-dependent K+ transport regulation in the human red cell. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 25-34.	1.4	13
102	Use of the ionophore A23187 to measure and control cytoplasmic Ca2+ levels in intact red cells. Cell Calcium, 1985, 6, 15-23.	1.1	36
103	Pyruvate prevents the ATP depletion caused by formaldehyde or calcium-chelator esters in the human red cell. Biochimica Et Biophysica Acta - Biomembranes, 1985, 813, 148-150.	1.4	33
104	Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane. Biochimica Et Biophysica Acta - Biomembranes, 1984, 771, 23-27.	1.4	20
105	Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells. Biochimica Et Biophysica Acta - Biomembranes, 1984, 773, 143-156.	1.4	110
106	Effects of redox agents on the Ca2+-activated K+ channel. Cell Calcium, 1983, 4, 493-497.	1.1	6
107	All-or-none response of the Ca2+-dependent K+ channel in inside-out vesicles. Nature, 1982, 296, 744-746.	13.7	50
108	Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane. Biochimica Et Biophysica Acta - Biomembranes, 1979, 556, 118-130.	1.4	36