
## **Timothy Beers**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9371027/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.                                                                                                                                                                                 | 7.7  | 4,201     |
| 2  | THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.                                                                                                                                              | 7.7  | 1,877     |
| 3  | SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.                                                                                                                                                 | 4.7  | 1,700     |
| 4  | The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.                                                                                                                                                                                   | 7.7  | 1,202     |
| 5  | THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical<br>Journal, Supplement Series, 2011, 193, 29.                                                                                                                                                          | 7.7  | 1,166     |
| 6  | THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.                                                                                                    | 7.7  | 1,158     |
| 7  | Measures of location and scale for velocities in clusters of galaxies - A robust approach.<br>Astronomical Journal, 1990, 100, 32.                                                                                                                                                                      | 4.7  | 1,119     |
| 8  | Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe.<br>Astronomical Journal, 2017, 154, 28.                                                                                                                                                                  | 4.7  | 1,100     |
| 9  | The Discovery and Analysis of Very Metal-Poor Stars in the Galaxy. Annual Review of Astronomy and Astrophysics, 2005, 43, 531-580.                                                                                                                                                                      | 24.3 | 905       |
| 10 | SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g</i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.                                                                                                                                                                                       | 4.7  | 905       |
| 11 | The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern<br>Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.                                                                                                   | 7.7  | 826       |
| 12 | The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the<br>Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point<br>Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42. | 7.7  | 796       |
| 13 | Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as<br>Revealed from a Large Sample of Nonkinematically Selected Stars. Astronomical Journal, 2000, 119,<br>2843-2865.                                                                                   | 4.7  | 545       |
| 14 | Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis.<br>Science, 2017, 358, 1570-1574.                                                                                                                                                                  | 12.6 | 517       |
| 15 | Two stellar components in the halo of the Milky Way. Nature, 2007, 450, 1020-1025.                                                                                                                                                                                                                      | 27.8 | 505       |
| 16 | Nucleosynthetic signatures of the first stars. Nature, 2005, 434, 871-873.                                                                                                                                                                                                                              | 27.8 | 481       |
| 17 | The Milky Way Tomography with SDSS. II. Stellar Metallicity. Astrophysical Journal, 2008, 684, 287-325.                                                                                                                                                                                                 | 4.5  | 456       |
| 18 | A search for stars of very low metal abundance. II. Astronomical Journal, 1992, 103, 1987.                                                                                                                                                                                                              | 4.7  | 429       |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A stellar relic from the early Milky Way. Nature, 2002, 419, 904-906.                                                                                                                                                       | 27.8 | 418       |
| 20 | THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS. Astronomical Journal, 2008, 136, 2022-2049.                                                                                      | 4.7  | 417       |
| 21 | STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7. Astrophysical Journal, 2010, 712, 692-727.                                     | 4.5  | 408       |
| 22 | The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey<br>Mapping Nearby Galaxies at Apache Point Observatory. Astrophysical Journal, Supplement Series, 2017,<br>233, 25. | 7.7  | 406       |
| 23 | The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar,<br>and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.                                            | 7.7  | 405       |
| 24 | LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan.<br>Research in Astronomy and Astrophysics, 2012, 12, 735-754.                                                             | 1.7  | 404       |
| 25 | First stars. I. The extremer-element rich, iron-poor halo giant CSÂ31082-001. Astronomy and Astrophysics, 2002, 387, 560-579.                                                                                               | 5.1  | 392       |
| 26 | Carbonâ€enhanced Metalâ€poor Stars. I. Chemical Compositions of 26 Stars. Astrophysical Journal, 2007,<br>655, 492-521.                                                                                                     | 4.5  | 374       |
| 27 | ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY. Astronomical Journal, 2015, 150, 148.                                                                                                          | 4.7  | 344       |
| 28 | The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities,<br>Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.          | 7.7  | 299       |
| 29 | A Curious Milky Way Satellite in Ursa Major. Astrophysical Journal, 2006, 650, L41-L44.                                                                                                                                     | 4.5  | 283       |
| 30 | THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS.<br>Astronomical Journal, 2008, 136, 2050-2069.                                                                               | 4.7  | 259       |
| 31 | THE MOST METAL-POOR STARS. II. CHEMICAL ABUNDANCES OF 190 METAL-POOR STARS INCLUDING 10 NEW STARS WITH [Fe/H] â ©½ –3.5, ,. Astrophysical Journal, 2013, 762, 26.                                                           | 4.5  | 259       |
| 32 | The Binary Frequency Among Carbonâ€enhanced,sâ€Process–rich, Metalâ€poor Stars. Astrophysical Journal,<br>2005, 625, 825-832.                                                                                               | 4.5  | 247       |
| 33 | A search for stars of very low metal abundance. I. Astronomical Journal, 1985, 90, 2089.                                                                                                                                    | 4.7  | 246       |
| 34 | CARBON-ENHANCED METAL-POOR STAR FREQUENCIES IN THE GALAXY: CORRECTIONS FOR THE EFFECT OF EVOLUTIONARY STATUS ON CARBON ABUNDANCES. Astrophysical Journal, 2014, 797, 21.                                                    | 4.5  | 241       |
| 35 | THE SEGUE STELLAR PARAMETER PIPELINE. III. COMPARISON WITH HIGH-RESOLUTION SPECTROSCOPY OF SDSS/SEGUE FIELD STARS. Astronomical Journal, 2008, 136, 2070-2082.                                                              | 4.7  | 208       |
| 36 | FORMATION AND EVOLUTION OF THE DISK SYSTEM OF THE MILKY WAY: [α/Fe] RATIOS AND KINEMATICS OF THE SEGUE G-DWARF SAMPLE. Astrophysical Journal, 2011, 738, 187.                                                               | 4.5  | 200       |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | MAPPING THE STELLAR STRUCTURE OF THE MILKY WAY THICK DISK AND HALO USING SEGUE PHOTOMETRY.<br>Astrophysical Journal, 2010, 714, 663-674.                                                                            | 4.5 | 189       |
| 38 | THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS. Astrophysical Journal, 2010, 716, 1-29.                                                                                                                | 4.5 | 185       |
| 39 | The Second APOKASC Catalog: The Empirical Approach. Astrophysical Journal, Supplement Series, 2018, 239, 32.                                                                                                        | 7.7 | 183       |
| 40 | LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82. Astrophysical Journal, 2010, 708, 717-741.                                                               | 4.5 | 174       |
| 41 | A Subaru/High Dispersion Spectrograph Study of Lead (Pb) Abundances in Eightsâ€Process Element–rich,<br>Metalâ€poor Stars. Astrophysical Journal, 2002, 580, 1149-1158.                                             | 4.5 | 165       |
| 42 | Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected<br>Sample. Astronomical Journal, 2000, 119, 2866-2881.                                                       | 4.7 | 164       |
| 43 | THE CASE FOR THE DUAL HALO OF THE MILKY WAY. Astrophysical Journal, 2012, 746, 34.                                                                                                                                  | 4.5 | 157       |
| 44 | Bright Metalâ€poor Stars from the Hamburg/ESO Survey. I. Selection and Followâ€up Observations from<br>329 Fields. Astrophysical Journal, 2006, 652, 1585-1603.                                                     | 4.5 | 151       |
| 45 | Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy.<br>Monthly Notices of the Royal Astronomical Society, 2017, 465, 501-524.                                        | 4.4 | 150       |
| 46 | Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2758-2776.                                                               | 4.4 | 148       |
| 47 | OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. I. EVIDENCE FOR MULTIPLE<br>PROGENITORS OF CEMP-NO STARS. Astrophysical Journal, 2016, 833, 20.                                                            | 4.5 | 143       |
| 48 | The stellar content of the Hamburg/ESO survey. Astronomy and Astrophysics, 2008, 484, 721-732.                                                                                                                      | 5.1 | 143       |
| 49 | Thorium and Uranium Chronometers Applied to CS 31082â€001. Astrophysical Journal, 2002, 579, 626-638.                                                                                                               | 4.5 | 142       |
| 50 | StarHorse: a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2556-2583.                               | 4.4 | 141       |
| 51 | THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA. Astronomical Journal, 2011, 141, 90.                                          | 4.7 | 133       |
| 52 | Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowdedâ€Field Photometry and<br>Cluster Fiducial Sequences in <i>ugriz</i> . Astrophysical Journal, Supplement Series, 2008, 179, 326-354. | 7.7 | 132       |
| 53 | Estimation of Stellar Metal Abundance. II. A Recalibration of the C[CLC]a[/CLC] [CSC]ii[/CSC] K<br>Technique, and the Autocorrelation Function Method. Astronomical Journal, 1999, 117, 981-1009.                   | 4.7 | 129       |
| 54 | CARBON-ENHANCED METAL-POOR STARS IN SDSS/SEGUE. I. CARBON ABUNDANCE ESTIMATION AND FREQUENCY OF CEMP STARS. Astronomical Journal, 2013, 146, 132.                                                                   | 4.7 | 124       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | J-PLUS: The Javalambre Photometric Local Universe Survey. Astronomy and Astrophysics, 2019, 622, A176.                                                                                                | 5.1  | 124       |
| 56 | Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct<br>Metal-poor Populations. Astrophysical Journal, 2018, 852, 49.                                   | 4.5  | 123       |
| 57 | Galactic Stellar Populations in the Era of the Sloan Digital Sky Survey and Other Large Surveys.<br>Annual Review of Astronomy and Astrophysics, 2012, 50, 251-304.                                   | 24.3 | 118       |
| 58 | From the bulge to the outer disc: StarHorse stellar parameters, distances, and extinctions for stars in APOGEE DR16 and other spectroscopic surveys. Astronomy and Astrophysics, 2020, 638, A76.      | 5.1  | 116       |
| 59 | The Chemical Composition of Carbonâ€rich, Very Metal Poor Stars: A New Class of Mildly Carbon Rich<br>Objects without Excess of Neutron apture Elements. Astrophysical Journal, 2002, 567, 1166-1182. | 4.5  | 115       |
| 60 | AN ELEMENTAL ASSAY OF VERY, EXTREMELY, AND ULTRA-METAL-POOR STARS. Astrophysical Journal, 2015, 807, 173.                                                                                             | 4.5  | 115       |
| 61 | The role of binaries in the enrichment of the early Galactic halo. Astronomy and Astrophysics, 2016, 588, A3.                                                                                         | 5.1  | 114       |
| 62 | THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY. Astrophysical Journal, 2013, 763, 65.                                                                        | 4.5  | 113       |
| 63 | Stellar haloes of simulated Milky-Way-like galaxies: chemical and kinematic properties. Monthly<br>Notices of the Royal Astronomical Society, 2013, 432, 3391-3400.                                   | 4.4  | 111       |
| 64 | The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo*. Astrophysical Journal, 2018, 858, 92.                                              | 4.5  | 111       |
| 65 | A chemical signature of first-generation very massive stars. Science, 2014, 345, 912-915.                                                                                                             | 12.6 | 106       |
| 66 | Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View. Astrophysical Journal, 2018, 854, 147.                                                                                 | 4.5  | 100       |
| 67 | Dynamical Relics of the Ancient Galactic Halo. Astrophysical Journal, 2020, 891, 39.                                                                                                                  | 4.5  | 94        |
| 68 | The Southern Photometric Local Universe Survey (S-PLUS): improved SEDs, morphologies, and redshifts with 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2019, 489, 241-267.   | 4.4  | 92        |
| 69 | The R-Process Alliance: First Release from the Northern Search for r-process-enhanced Metal-poor<br>Stars in the Galactic Halo. Astrophysical Journal, 2018, 868, 110.                                | 4.5  | 88        |
| 70 | INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. I. THE ECHOS OF MILKY WAY FORMATION. Astrophysical Journal, 2009, 703, 2177-2204.                                         | 4.5  | 84        |
| 71 | GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES. Astrophysical Journal, 2009, 700, 523-544.                                           | 4.5  | 83        |
| 72 | THE [Fe/H], [C/Fe], AND [α/Fe] DISTRIBUTIONS OF THE BO×TES I DWARF SPHEROIDAL GALAXY. Astrophysical<br>Journal, 2011, 738, 51.                                                                        | 4.5  | 83        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The role of binaries in the enrichment of the early Galactic halo. Astronomy and Astrophysics, 2016, 586, A160.                                                                                      | 5.1 | 83        |
| 74 | THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS,. Astrophysical Journal, 2011, 742, 54.                                                   | 4.5 | 78        |
| 75 | The Lazy Giants: APOGEE Abundances Reveal Low Star Formation Efficiencies in the Magellanic Clouds.<br>Astrophysical Journal, 2020, 895, 88.                                                         | 4.5 | 77        |
| 76 | Close Binary Companions to APOGEE DR16 Stars: 20,000 Binary-star Systems Across the Color–Magnitude Diagram. Astrophysical Journal, 2020, 895, 2.                                                    | 4.5 | 74        |
| 77 | APOGEE chemical abundances of globular cluster giants in the inner Galaxy. Monthly Notices of the<br>Royal Astronomical Society, 2017, 466, 1010-1018.                                               | 4.4 | 71        |
| 78 | POPULATION STUDIES. XIII. A NEW ANALYSIS OF THE BIDELMAN-MACCONNELL "WEAK-METAL―<br>STARS—CONFIRMATION OF METAL-POOR STARS IN THE THICK DISK OF THE GALAXY. Astrophysical Journal,<br>2014, 794, 58. | 4.5 | 70        |
| 79 | Metal Abundances and Kinematics of Bright Metal-poor Giants Selected from the LSE Survey:<br>Implications for the Metal-weak Thick Disk. Astronomical Journal, 2002, 124, 931-948.                   | 4.7 | 70        |
| 80 | A high-resolution spectral analysis of three carbon-enhanced metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2006, 372, 343-356.                                                | 4.4 | 68        |
| 81 | APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy. Astrophysical Journal, 2017, 845, 162.                                                                                                   | 4.5 | 68        |
| 82 | SDSS-IV MaStar: A Large and Comprehensive Empirical Stellar Spectral Library—First Release.<br>Astrophysical Journal, 2019, 883, 175.                                                                | 4.5 | 67        |
| 83 | Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical<br>Patterns. Astrophysical Journal Letters, 2017, 846, L2.                                              | 8.3 | 66        |
| 84 | High-resolution abundance analysis of very metal-poor r-I stars. Astronomy and Astrophysics, 2014, 565, A93.                                                                                         | 5.1 | 64        |
| 85 | The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known.<br>Astrophysical Journal Letters, 2018, 859, L24.                                                       | 8.3 | 64        |
| 86 | APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites. Astrophysical Journal, 2021, 923, 172.                                                                                       | 4.5 | 64        |
| 87 | CARBON-ENHANCED METAL-POOR STARS: CEMP- <i>s</i> and CEMP-no SUBCLASSES IN THE HALO SYSTEM OF THE MILKY WAY. Astrophysical Journal, 2014, 788, 180.                                                  | 4.5 | 63        |
| 88 | Actinide Production in the Neutron-rich Ejecta of a Neutron Star Merger. Astrophysical Journal, 2019,<br>870, 23.                                                                                    | 4.5 | 62        |
| 89 | The <i>R</i> -Process Alliance: Fourth Data Release from the Search for <i>R</i> -process-enhanced Stars<br>in the Galactic Halo. Astrophysical Journal, Supplement Series, 2020, 249, 30.           | 7.7 | 61        |
| 90 | A Dynamical and Kinematic Model of the Galactic Stellar Halo and Possible Implications for Galaxy<br>Formation Scenarios. Astrophysical Journal, 1997, 481, 775-781.                                 | 4.5 | 59        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Variable Stars in the Newly Discovered Milky Way Dwarf Spheroidal Satellite Canes Venatici I.<br>Astrophysical Journal, 2008, 674, L81-L84.                                                      | 4.5 | 57        |
| 92  | OBSERVATIONAL CONSTRAINTS ON FIRST-STAR NUCLEOSYNTHESIS. II. SPECTROSCOPY OF AN ULTRA METAL-POOR CEMP-no STAR*. Astrophysical Journal, 2016, 833, 21.                                            | 4.5 | 56        |
| 93  | A Low-mass Stellar-debris Stream Associated with a Globular Cluster Pair in the Halo. Astrophysical<br>Journal Letters, 2020, 898, L37.                                                          | 8.3 | 55        |
| 94  | Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two<br>Distinct Populations. Astrophysical Journal, 2018, 852, 50.                                | 4.5 | 53        |
| 95  | Galactic Archeology with the AEGIS Survey: The Evolution of Carbon and Iron in the Galactic Halo.<br>Astrophysical Journal, 2018, 861, 146.                                                      | 4.5 | 52        |
| 96  | METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. II. DISCOVERY OF FOUR STARS WITH [Fe/H]<br>⩽ –3.5. Astrophysical Journal, 2014, 781, 40.                                                  | 4.5 | 51        |
| 97  | APOGEE DR14/DR15 Abundances in the Inner Milky Way. Astrophysical Journal, 2019, 870, 138.                                                                                                       | 4.5 | 51        |
| 98  | Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of<br>Beers, Preston, and Shectman. Astronomical Journal, 2005, 130, 2804-2823.                   | 4.7 | 50        |
| 99  | The R-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-poor Star with an<br>Extreme R-process Enhancement of [Eu/H]Â=Ââ°'0.14*. Astrophysical Journal, 2018, 865, 129. | 4.5 | 49        |
| 100 | THE FRACTIONS OF INNER- AND OUTER-HALO STARS IN THE LOCAL VOLUME. Astrophysical Journal Letters, 2015, 813, L28.                                                                                 | 8.3 | 48        |
| 101 | BRIGHT METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY. II. A CHEMODYNAMICAL ANALYSIS.<br>Astrophysical Journal, 2017, 835, 81.                                                                     | 4.5 | 48        |
| 102 | RAVE J203843.2–002333: The First Highly R-process-enhanced Star Identified in the RAVE<br>Survey <sup>*</sup> . Astrophysical Journal, 2017, 844, 18.                                            | 4.5 | 48        |
| 103 | The Hamburg/ESO R-process Enhanced Star survey (HERES). Astronomy and Astrophysics, 2017, 607, A91.                                                                                              | 5.1 | 47        |
| 104 | The R-Process Alliance: First Magellan/MIKE Release from the Southern Search for R-process-enhanced Stars*. Astrophysical Journal, 2020, 898, 150.                                               | 4.5 | 46        |
| 105 | Extremely Metal-poor Stars. I. Spectroscopic Data. Astrophysical Journal, Supplement Series, 1996, 107, 391.                                                                                     | 7.7 | 44        |
| 106 | The Parallax Zero-point of Gaia Early Data Release 3 from LAMOST Primary Red Clump Stars.<br>Astrophysical Journal Letters, 2021, 910, L5.                                                       | 8.3 | 42        |
| 107 | Dynamically Tagged Groups of Very Metal-poor Halo Stars from the HK and Hamburg/ESO Surveys.<br>Astrophysical Journal, 2021, 907, 10.                                                            | 4.5 | 41        |
| 108 | Double-lined Spectroscopic Binaries in the APOGEE DR16 and DR17 Data. Astronomical Journal, 2021, 162, 184.                                                                                      | 4.7 | 40        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Evidence for the Third Stellar Population in the Milky Way's Disk. Astrophysical Journal, 2019, 887, 22.                                                                                                                          | 4.5  | 39        |
| 110 | Fluorine in a Carbon-enhanced Metal-poor Star. Astrophysical Journal, 2007, 667, L81-L84.                                                                                                                                         | 4.5  | 38        |
| 111 | The r-process Pattern of a Bright, Highly r-process-enhanced Metal-poor Halo Star at [Fe/H]Ââ^1⁄4Ââ^'2.<br>Astrophysical Journal Letters, 2018, 854, L20.                                                                         | 8.3  | 38        |
| 112 | Chemodynamics of newly identified giants with a globular cluster like abundance patterns in the<br>bulge, disc, and halo of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2019, 488,<br>2864-2880.            | 4.4  | 38        |
| 113 | J-PLUS: Identification of low-metallicity stars with artificial neural networks using SPHINX.<br>Astronomy and Astrophysics, 2019, 622, A182.                                                                                     | 5.1  | 38        |
| 114 | Abundances and kinematics of carbon-enhanced metal-poor stars in the Galactic halo. Astronomy and Astrophysics, 2019, 623, A128.                                                                                                  | 5.1  | 37        |
| 115 | Estimation of stellar metal abundance. I - Calibration of the CA II K index. Astronomical Journal, 1990, 100, 849.                                                                                                                | 4.7  | 37        |
| 116 | Chemical Cartography. I. A Carbonicity Map of the Galactic Halo. Astrophysical Journal, 2017, 836, 91.                                                                                                                            | 4.5  | 34        |
| 117 | The R-Process Alliance: Chemodynamically Tagged Groups of Halo r-process-enhanced Stars Reveal a<br>Shared Chemical-evolution History. Astrophysical Journal, 2021, 908, 79.                                                      | 4.5  | 34        |
| 118 | <i>HUBBLE SPACE TELESCOPE</i> NEAR-ULTRAVIOLET SPECTROSCOPY OF BRIGHT CEMP- <i>s</i> STARS.<br>Astrophysical Journal, 2015, 812, 109.                                                                                             | 4.5  | 33        |
| 119 | The age structure of the Milky Way's halo. Nature Physics, 2016, 12, 1170-1176.                                                                                                                                                   | 16.7 | 33        |
| 120 | INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. III. STATISTICAL CHEMICAL TAGGING IN THE SMOOTH HALO. Astrophysical Journal, 2012, 749, 77.                                                           | 4.5  | 32        |
| 121 | Spectroscopic Validation of Low-metallicity Stars from RAVE. Astronomical Journal, 2018, 155, 256.                                                                                                                                | 4.7  | 32        |
| 122 | The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet<br>Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925*. Astrophysical Journal,<br>Supplement Series, 2022, 260, 27. | 7.7  | 32        |
| 123 | SEARCHES FOR METAL-POOR STARS FROM THE HAMBURG/ESO SURVEY USING THE CH <i>G</i> BAND. Astronomical Journal, 2011, 142, 188.                                                                                                       | 4.7  | 30        |
| 124 | INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. II. THE ELEMENTAL ABUNDANCES OF ECHOS. Astrophysical Journal, 2011, 734, 49.                                                                          | 4.5  | 28        |
| 125 | Discovery of a New Stellar Subpopulation Residing in the (Inner) Stellar Halo of the Milky Way.<br>Astrophysical Journal Letters, 2019, 886, L8.                                                                                  | 8.3  | 28        |
| 126 | A Blueprint for the Milky Way's Stellar Populations: The Power of Large Photometric and Astrometric<br>Surveys. Astrophysical Journal, 2020, 897, 39.                                                                             | 4.5  | 28        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Exploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE. Astrophysical Journal, 2020, 901, 109.                                                                        | 4.5 | 28        |
| 128 | Chemical trends in the Galactic halo from APOGEE data. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1586-1600.                                                           | 4.4 | 27        |
| 129 | High-resolution Spectroscopy of Extremely Metal-poor Stars from SDSS/SEGUE. III. Unevolved Stars with [Fe/H] ≲ â~3.5*. Astronomical Journal, 2017, 154, 52.                               | 4.7 | 27        |
| 130 | Origin of the CEMP-no Group Morphology in the Milky Way. Astrophysical Journal, 2019, 878, 97.                                                                                            | 4.5 | 26        |
| 131 | The formation of the heaviest elements. Physics Today, 2018, 71, 30-37.                                                                                                                   | 0.3 | 25        |
| 132 | APOGEE [C/N] Abundances across the Galaxy: Migration and Infall from Red Giant Ages. Astrophysical Journal, 2019, 871, 181.                                                               | 4.5 | 25        |
| 133 | Milky Way Tomography with the SkyMapper Southern Survey. II. Photometric Recalibration of SMSS<br>DR2. Astrophysical Journal, 2021, 907, 68.                                              | 4.5 | 25        |
| 134 | VVV CL001: Likely the Most Metal-poor Surviving Globular Cluster in the Inner Galaxy. Astrophysical Journal Letters, 2021, 908, L42.                                                      | 8.3 | 25        |
| 135 | The Photometric Metallicity and Carbon Distributions of the Milky Way's Halo and Solar<br>Neighborhood from S-PLUS Observations of SDSS Stripe 82. Astrophysical Journal, 2021, 912, 147. | 4.5 | 25        |
| 136 | Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive<br>Chemodynamical Analysis of LAMOST J1109+0754. Astrophysical Journal, 2020, 903, 88.     | 4.5 | 25        |
| 137 | APPLICATION OF THE SEGUE STELLAR PARAMETER PIPELINE TO LAMOST STELLAR SPECTRA. Astronomical Journal, 2015, 150, 187.                                                                      | 4.7 | 24        |
| 138 | The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances.<br>Astrophysical Journal, 2018, 855, 38.                                               | 4.5 | 24        |
| 139 | Disk-like Chemistry of the Triangulum-Andromeda Overdensity as Seen by APOGEE. Astrophysical<br>Journal Letters, 2018, 859, L8.                                                           | 8.3 | 24        |
| 140 | The R-Process Alliance: Discovery of the First Metal-poor Star with a Combined r- and s-process Element Signature*. Astrophysical Journal, 2018, 862, 174.                                | 4.5 | 24        |
| 141 | The R-process Alliance: The Peculiar Chemical Abundance Pattern of RAVE J183013.5â^'455510*.<br>Astrophysical Journal, 2020, 897, 78.                                                     | 4.5 | 24        |
| 142 | Chemical Cartography. II. The Assembly History of the Galactic Stellar Halo Traced by Carbon-enhanced<br>Metal-poor Stars. Astrophysical Journal, 2019, 885, 102.                         | 4.5 | 23        |
| 143 | Beyond Spectroscopy. I. Metallicities, Distances, and Age Estimates for Over 20 Million Stars from SMSS DR2 and Gaia EDR3. Astrophysical Journal, 2022, 925, 164.                         | 4.5 | 23        |
| 144 | Timing the Evolution of the Galactic Disk with NGC 6791: An Open Cluster with Peculiar High-α<br>Chemistry as Seen by APOGEE. Astrophysical Journal, 2017, 842, 49.                       | 4.5 | 22        |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The R-Process Alliance: Chemical Abundances for a Trio of r-process-enhanced Stars—One Strong, One<br>Moderate, and One Mild*. Astrophysical Journal, 2018, 864, 43.                       | 4.5 | 22        |
| 146 | SEGUE-2: Old Milky Way Stars Near and Far. Astrophysical Journal, Supplement Series, 2022, 259, 60.                                                                                        | 7.7 | 22        |
| 147 | The central spheroids of Milky Way mass-sized galaxies. Monthly Notices of the Royal Astronomical<br>Society, 2018, 473, 1656-1666.                                                        | 4.4 | 21        |
| 148 | The R-Process Alliance: Spectroscopic Follow-up of Low-metallicity Star Candidates from the Best<br>& Brightest Survey. Astrophysical Journal, 2019, 870, 122.                             | 4.5 | 21        |
| 149 | Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy and Astrophysics, 2020, 644, A83.                                                                               | 5.1 | 21        |
| 150 | Discovery of a Large Population of Nitrogen-enhanced Stars in the Magellanic Clouds. Astrophysical<br>Journal Letters, 2020, 903, L17.                                                     | 8.3 | 20        |
| 151 | Dynamically Tagged Groups of Metal-poor Stars from the Best and Brightest Survey. Astrophysical<br>Journal, 2022, 926, 26.                                                                 | 4.5 | 20        |
| 152 | A SEARCH FOR UNRECOGNIZED CARBON-ENHANCED METAL-POOR STARS IN THE GALAXY. Astronomical Journal, 2010, 139, 1051-1065.                                                                      | 4.7 | 19        |
| 153 | Identification of a Group III CEMP-no Star in the Dwarf Spheroidal Galaxy Canes Venatici I.<br>Astrophysical Journal, 2020, 894, 7.                                                        | 4.5 | 19        |
| 154 | The R-Process Alliance: Discovery of a Low-α, r-process-enhanced Metal-poor Star in the Galactic Halo.<br>Astrophysical Journal, 2019, 874, 148.                                           | 4.5 | 18        |
| 155 | The Stellar Velocity Distribution Function in the Milky Way Galaxy. Astronomical Journal, 2020, 160, 43.                                                                                   | 4.7 | 18        |
| 156 | Targeting Bright Metal-poor Stars in the Disk and Halo Systems of the Galaxy. Astrophysical Journal, 2021, 913, 11.                                                                        | 4.5 | 18        |
| 157 | Stellar Loci. V. Photometric Metallicities of 27 Million FGK Stars Based on Gaia Early Data Release 3.<br>Astrophysical Journal, Supplement Series, 2022, 258, 44.                         | 7.7 | 18        |
| 158 | The assembly history of the Galactic inner halo inferred from $\hat{I}_{\pm}$ -element patterns. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1745-1756.                  | 4.4 | 16        |
| 159 | Data Release 2 of S-PLUS: Accurate template-fitting based photometry covering â^¼1000 deg2 in 12 optical filters. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4590-4618. | 4.4 | 16        |
| 160 | Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – III. ωÂCen.<br>Monthly Notices of the Royal Astronomical Society, 2021, 505, 1645-1660.           | 4.4 | 15        |
| 161 | Metal-poor Stars Observed with the Southern African Large Telescope. Astrophysical Journal, 2020, 905, 20.                                                                                 | 4.5 | 15        |
| 162 | J-PLUS: Stellar parameters, C, N, Mg, Ca, and [ <i>α</i> /Fe] abundances for two million stars from DR1.<br>Astronomy and Astrophysics, 2022, 659, A181.                                   | 5.1 | 15        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances. Astrophysical Journal, Supplement Series, 2022, 260, 32.                       | 7.7 | 15        |
| 164 | Physical Parameters of SDSS Stars, the Nature of the SDSS â€~Ring around the Galaxy', and the SEGUE<br>Project. Publications of the Astronomical Society of Australia, 2004, 21, 207-211. | 3.4 | 14        |
| 165 | Abundance analysis of SDSS J134338.67+484426.6; an extremely metal-poor star from the MARVELS pre-survey. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2648-2656.        | 4.4 | 13        |
| 166 | The Origin of the Milky Way's Halo Age Distribution. Astrophysical Journal Letters, 2018, 859, L7.                                                                                        | 8.3 | 13        |
| 167 | The Metallicity Gradient and Complex Formation History of the Outermost Halo of the Milky Way.<br>Astrophysical Journal, 2020, 894, 34.                                                   | 4.5 | 13        |
| 168 | Constraints on the Galactic Inner Halo Assembly History from the Age Gradient of Blue<br>Horizontal-branch Stars. Astrophysical Journal, 2019, 884, 67.                                   | 4.5 | 12        |
| 169 | A Blueprint for the Milky Way's Stellar Populations. III. Spatial Distributions and Population Fractions of Local Halo Stars. Astrophysical Journal, 2021, 918, 74.                       | 4.5 | 12        |
| 170 | The R-Process Alliance: A Very Metal-poor, Extremely r-process-enhanced Star with [Eu/Fe]Â=Â+Â2.2, and<br>the Class of r-IIIÂStars*. Astrophysical Journal, 2020, 898, 40.                | 4.5 | 11        |
| 171 | The Origin of the 300 km s <sup>â^'1</sup> Stream near Segue 1. Astrophysical Journal, 2018, 866, 42.                                                                                     | 4.5 | 10        |
| 172 | Detection of Pb II in the Ultraviolet Spectra of Three Metal-poor Stars*. Astrophysical Journal Letters, 2020, 902, L24.                                                                  | 8.3 | 10        |
| 173 | Metallicity estimates for A-, F-, and G-type stars from the Edinburgh-Cape Blue Object Survey. Monthly<br>Notices of the Royal Astronomical Society, 2001, 320, 451-464.                  | 4.4 | 9         |
| 174 | Chemical Composition of Two Bright, Extremely Metal-poor Stars from the SDSS MARVELS Pre-survey.<br>Astrophysical Journal, 2018, 859, 114.                                                | 4.5 | 9         |
| 175 | Dependence of Galactic Halo Kinematics on the Adopted Galactic Potential. Astrophysical Journal, 2019, 882, 176.                                                                          | 4.5 | 9         |
| 176 | A Blueprint for the Milky Way's Stellar Populations. II. Improved Isochrone Calibration in the SDSS and<br>Pan-STARRS Photometric Systems. Astrophysical Journal, 2021, 907, 101.         | 4.5 | 9         |
| 177 | APOGEE-2S Discovery of Light- and Heavy-element Abundance Correlations in the Bulge Globular<br>Cluster NGC 6380. Astrophysical Journal Letters, 2021, 918, L9.                           | 8.3 | 9         |
| 178 | The Light Elements Be and B as Stellar Chronometers in the Early Galaxy. Symposium - International<br>Astronomical Union, 2000, 198, 425-431.                                             | 0.1 | 8         |
| 179 | WW Survey of Blue Horizontal Branch Stars in the Bulge–Halo Transition Region of the Milky Way.<br>Astrophysical Journal, 2019, 872, 206.                                                 | 4.5 | 8         |
| 180 | Insights into the Formation and Evolution History of the Galactic Disk System. Astrophysical Journal, 2020, 896, 14.                                                                      | 4.5 | 7         |

| #   | Article                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Two Populations of Carbon-enhanced Metal-poor Stars in the Disk System of the Milky Way.<br>Astrophysical Journal, 2021, 914, 100.                                                 | 4.5  | 7         |
| 182 | APOGEE-2 Discovery of a Large Population of Relatively High-metallicity Globular Cluster Debris.<br>Astrophysical Journal Letters, 2021, 918, L37.                                 | 8.3  | 7         |
| 183 | Metal-poor Stars Observed with the Southern African Large Telescope II. An Extended Sample.<br>Astrophysical Journal, 2022, 927, 13.                                               | 4.5  | 7         |
| 184 | The Metallicity Distribution Function of the Halo of the Milky Way. Proceedings of the International Astronomical Union, 2005, 1, 175-183.                                         | 0.0  | 6         |
| 185 | Evidence for Multiple Accretion Events in the Gaia-Sausage/Enceladus Structures. Astrophysical<br>Journal Letters, 2021, 911, L21.                                                 | 8.3  | 6         |
| 186 | Stellar Parameters for the First Release of the MaSTar Library: An Empirical Approach. Astrophysical<br>Journal, 2020, 899, 62.                                                    | 4.5  | 6         |
| 187 | SDSS-IV MaStar: theoretical atmospheric parameters for the MaNGA stellar library. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4308-4329.                         | 4.4  | 6         |
| 188 | Searching for r-process-enhanced stars in the LAMOST survey I: the method. Research in Astronomy and Astrophysics, 2021, 21, 036.                                                  | 1.7  | 4         |
| 189 | Abundance Analysis of New r-process-enhanced Stars from the HESP–GOMPA Survey. Astrophysical<br>Journal, 2020, 899, 22.                                                            | 4.5  | 4         |
| 190 | Determination of Sodium Abundance Ratio from Low-resolution Stellar Spectra and Its Applications.<br>Astrophysical Journal, 2022, 925, 35.                                         | 4.5  | 4         |
| 191 | The new record holder for the most iron-poor star: HE 1327–2326, a dwarf or subgiant with<br>[Fe/H[=â^'5.4. Proceedings of the International Astronomical Union, 2005, 1, 207-212. | 0.0  | 3         |
| 192 | An orbit fit to likely Hermus Stream stars. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2419-2430.                                                               | 4.4  | 3         |
| 193 | Silicon and strontium abundances of very metal-poor stars determined from near-infrared spectra.<br>Publication of the Astronomical Society of Japan, 2022, 74, 273-282.           | 2.5  | 3         |
| 194 | Overcoming great barriers. Nature Physics, 2009, 5, 463-464.                                                                                                                       | 16.7 | 2         |
| 195 | Characterizing r-Process Sites through Actinide Production. Journal of Physics: Conference Series, 2020, 1668, 012020.                                                             | 0.4  | 2         |
| 196 | Chemical Abundance Patterns of Extremely Metal-Poor Stars with [Fe/H]\$lesssim -3.5\$. Proceedings of the International Astronomical Union, 2005, 1, 195-200.                      | 0.0  | 1         |
| 197 | Searches for the Most Metalâ€Poor Candidates from SDSS and SEGUE. , 2008, , .                                                                                                      |      | 1         |
| 198 | CS 22876–032: The Most Metalâ€Poor Dwarfs. Abundances and 3D Effects. , 2008, , .                                                                                                  |      | 1         |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Fluorine in the Carbonâ€Enhanced Metalâ€Poor Star HE 1305+0132. AIP Conference Proceedings, 2008, , .                                                                                                       | 0.4  | 1         |
| 200 | The Metalâ€₽oor End of the Lithium Plateau. , 2008, , .                                                                                                                                                     |      | 1         |
| 201 | Lithium Abundances in Extremely Metal-Poor Turn-Off Stars. AIP Conference Proceedings, 2008, , .                                                                                                            | 0.4  | 1         |
| 202 | The Chemo-Dynamical History of the Milky Way as Revealed by SDSS/SEGUE. Proceedings of the International Astronomical Union, 2009, 5, 453-460.                                                              | 0.0  | 1         |
| 203 | Searching for <i>s</i> -Process-Enhanced Metal-Poor Stars. Publications of the Astronomical Society of Australia, 2009, 26, 335-338.                                                                        | 3.4  | 1         |
| 204 | Erratum "Milky Way Tomography with the SkyMapper Southern Survey. II. Photometric Recalibration of SMSS DR2―(2021, ApJ, 907, 68). Astrophysical Journal, 2022, 924, 141.                                    | 4.5  | 1         |
| 205 | Is TerzanÂ5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE. Monthly<br>Notices of the Royal Astronomical Society, 2022, 513, 3429-3443.                                        | 4.4  | 1         |
| 206 | The earliest phases of galaxy evolution: massive stars. Symposium - International Astronomical Union, 1999, 193, 734-735.                                                                                   | 0.1  | 0         |
| 207 | The Ideal Stars for Exploration of Early-Epoch 7Li Abundances. Symposium - International<br>Astronomical Union, 2000, 198, 514-515.                                                                         | 0.1  | 0         |
| 208 | The Mass of the Galaxy from Large Samples of Field Horizontal-Branch Stars in the SDSS Early Data<br>Release. Symposium - International Astronomical Union, 2004, 220, 195-200.                             | 0.1  | 0         |
| 209 | Subaru/HDS Studies of r-Process Elements in Metal-Poor Stars from Near-UV Spectra. Proceedings of the International Astronomical Union, 2005, 1, 429-434.                                                   | 0.0  | 0         |
| 210 | Lithium abundances in extremely metal-poor unevolved stars. Proceedings of the International Astronomical Union, 2005, 1, 35-40.                                                                            | 0.0  | 0         |
| 211 | The Hamburg/ESO R-process Enhanced Star survey (HERES): Abundances. Proceedings of the International Astronomical Union, 2005, 1, 201-206.                                                                  | 0.0  | 0         |
| 212 | Estimation of carbon abundances in metal-deficient stars. Application to the "strong G-Band―stars of<br>Beers, Preston, & Schectman. Proceedings of the International Astronomical Union, 2005, 1, 273-274. | 0.0  | 0         |
| 213 | Abundances in extremely metal-poor stars: comparison of the trends of abundance ratios in giants and turnoff stars. Proceedings of the International Astronomical Union, 2006, 2, 280-285.                  | 0.0  | 0         |
| 214 | Seeing stars. Nature Physics, 2006, 2, 511-512.                                                                                                                                                             | 16.7 | 0         |
| 215 | The Giants Stars HE 0107–5240 and HE 0557–4840 and New Searches for Metalâ€Poor Stars. , 2008, , .                                                                                                          |      | 0         |
|     |                                                                                                                                                                                                             |      |           |

New Results from Bright Metalâ€Poor Stars in the Hamburg/ESO Survey. , 2008, , .

0

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Revised Parameter Estimates For The Most Metalâ€Poor Candidates In SDSSâ€I And SEGUE. , 2008, , .                                                                                               |     | Ο         |
| 218 | Refined Estimates of Carbon Abundances for Carbonâ€Enhanced Metalâ€Poor Stars. , 2008, , .                                                                                                      |     | 0         |
| 219 | The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532. AIP Conference Proceedings, 2008, , .                                                                                       | 0.4 | Ο         |
| 220 | Observations of Very Metal-Poor Stars in the Galaxy. AlP Conference Proceedings, 2008, , .                                                                                                      | 0.4 | 0         |
| 221 | The dichotomy of the halo of the Milky Way. AIP Conference Proceedings, 2008, , .                                                                                                               | 0.4 | Ο         |
| 222 | Relics of Primordial Star Formation: The Milky Way and Local Dwarfs. Proceedings of the International Astronomical Union, 2008, 4, 323-329.                                                     | 0.0 | 0         |
| 223 | SEGUE, and the future of large scale surveys of the Galaxy. Proceedings of the International Astronomical Union, 2008, 4, 461-468.                                                              | 0.0 | Ο         |
| 224 | Abundance Patterns Among Very Metal-Poor Stars in the Halo of the Galaxy: A Statistical Approach.<br>Proceedings of the International Astronomical Union, 2009, 5, 412-413.                     | 0.0 | 0         |
| 225 | The Milky Way Halo and the First Stars: New Frontiers in Galactic Archaeology. Proceedings of the International Astronomical Union, 2009, 5, 184-184.                                           | 0.0 | Ο         |
| 226 | A Search for Unrecognized Carbon-Enhanced Metal-Poor Stars. Proceedings of the International Astronomical Union, 2009, 5, 132-133.                                                              | 0.0 | 0         |
| 227 | Structure and Kinematics of the Stellar Halos and Thick Disks of the Milky Way Based on Calibration Stars from SDSS DR7. Proceedings of the International Astronomical Union, 2009, 5, 267-270. | 0.0 | Ο         |
| 228 | Metallicity Mapping with <i>gri</i> Photometry: The Virgo Overdensity and the Halos of the Galaxy.<br>Proceedings of the International Astronomical Union, 2009, 5, 127-130.                    | 0.0 | 0         |
| 229 | A spectroscopic survey of FHB stars near the south galactic pole. Proceedings of the International Astronomical Union, 2009, 5, 422-423.                                                        | 0.0 | Ο         |
| 230 | Near-IR Spectroscopy of CEMP Stars with SOAR/OSIRIS. Proceedings of the International Astronomical Union, 2009, 5, 126-127.                                                                     | 0.0 | 0         |
| 231 | Abundance analysis of the Zinc enhanced metal-poor star BS 16920-017. , 2010, , .                                                                                                               |     | Ο         |
| 232 | Time-Resolved Spectroscopy with SDSS. Proceedings of the International Astronomical Union, 2011, 7, 289-290.                                                                                    | 0.0 | 0         |
| 233 | Exploring the early Universe with extremely metal-poor stars. Proceedings of the International Astronomical Union, 2015, 11, 64-68.                                                             | 0.0 | 0         |
| 234 | Abundance Analysis for Extremely Metal-Poor Stars from SDSS/SEGUE. Proceedings of the<br>International Astronomical Union, 2017, 13, 337-338.                                                   | 0.0 | 0         |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Kinematic and Chemical Analysis of AEGIS Survey Stars. Proceedings of the International Astronomical Union, 2017, 13, 283-284.                                               | 0.0 | 0         |
| 236 | Chemo-Kinematic Properties of the Galactic Disk with SEGUE G and K Dwarfs: Constraints on Formation. Proceedings of the International Astronomical Union, 2017, 13, 306-307. | 0.0 | 0         |
| 237 | Lifting the Veil on Ultra Metal-Poor Stars in the Outermost Halo. Proceedings of the International Astronomical Union, 2017, 13, 389-390.                                    | 0.0 | 0         |
| 238 | Assembly of the Galactic Halo System Based on Carbon-Enhanced Metal-Poor Stars. Proceedings of the International Astronomical Union, 2017, 13, 327-328.                      | 0.0 | 0         |
| 239 | LIGHT ELEMENTS IN INHOMOGENEOUS EARLY GALAXY AND THEIR ASTROPHYSICAL INTERESTS. , 2003, , .                                                                                  |     | 0         |
| 240 | EFFICIENT SEARCHES FOR <font>R</font> -PROCESS-ENHANCED METAL-POOR STARS. , 2004, , .                                                                                        |     | 0         |
| 241 | EJECTA FROM PARAMETRIZED PROMPT EXPLOSION. , 2004, , .                                                                                                                       |     | 0         |
| 242 | SPECTROSCOPIC STUDIES OF R-PROCESS ELEMENTS IN VERY METAL-POOR STARS WITH SUBARU/HDS. , 2004, , .                                                                            |     | 0         |
| 243 | THE r-PROCESS IN SUPERNOVA EXPLOSIONS FROM THE COLLAPSE OF ONeMg CORES. , 2004, , .                                                                                          |     | 0         |