
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9370666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science and Technology, 2019, 86, 85-94.	15.1	221
2	A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews, 2013, 22, 1-22.	16.4	188
3	Influence of Wall Material and Inlet Drying Air Temperature on the Microencapsulation of Fish Oil by Spray Drying. Food and Bioprocess Technology, 2013, 6, 1561-1569.	4.7	149
4	Characterization of fibrillated antioxidant whey protein hydrolysate and comparison with fibrillated protein solution. Food Hydrocolloids, 2016, 52, 221-230.	10.7	137
5	Energy and exergy analyses of the spray drying process of fish oil microencapsulation. Biosystems Engineering, 2012, 111, 229-241.	4.3	131
6	Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition. Trends in Food Science and Technology, 2018, 75, 115-128.	15.1	116
7	Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry, 2016, 192, 831-836.	8.2	109
8	Rheology, Microstructure, and Functionality of Low-Fat Iranian White Cheese Made with Different Concentrations of Rennet. Journal of Dairy Science, 2005, 88, 3052-3062.	3.4	98
9	The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Research International, 2012, 49, 379-388.	6.2	92
10	Fabrication methods of biopolymeric microgels and microgel-based hydrogels. Food Hydrocolloids, 2017, 62, 262-272.	10.7	90
11	Whey Protein Concentrate and Gum Tragacanth as Fat Replacers in Nonfat Yogurt: Chemical, Physical, and Microstructural Properties. Journal of Dairy Science, 2008, 91, 2545-2552.	3.4	85
12	Optimization of emulsification procedure for mutual maximizing the encapsulation and exergy efficiencies of fish oil microencapsulation. Powder Technology, 2012, 225, 107-117.	4.2	78
13	Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 2013, 51, 866-871.	6.2	78
14	Characteristics of the bulk hydrogels made of the citric acid cross-linked whey protein microgels. Food Hydrocolloids, 2015, 50, 159-165.	10.7	77
15	Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil. Food Chemistry, 2016, 196, 1016-1022.	8.2	76
16	Two-step sequential cross-linking of sugar beet pectin for transforming zein nanoparticle-based Pickering emulsions to emulgels. Carbohydrate Polymers, 2016, 136, 738-743.	10.2	73
17	Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides. Food Chemistry, 2016, 200, 1-9.	8.2	71
18	Sonodisruption of re-assembled casein micelles at different pH values. Ultrasonics Sonochemistry, 2009, 16, 644-648.	8.2	70

#	Article	IF	CITATIONS
19	Texture of Low-Fat Iranian White Cheese as Influenced by Gum Tragacanth as a Fat Replacer. Journal of Dairy Science, 2007, 90, 4058-4070.	3.4	68
20	Cold-set hydrogels made of whey protein nanofibrils with different divalent cations. International Journal of Biological Macromolecules, 2016, 89, 499-506.	7.5	66
21	Gelatin as texture modifier and porogen in egg white hydrogel. Food Chemistry, 2019, 270, 189-195.	8.2	66
22	Acid-induced gelation behavior of sonicated casein solutions. Ultrasonics Sonochemistry, 2010, 17, 153-158.	8.2	65
23	The use of artificial neural network to predict exergetic performance of spray drying process: A preliminary study. Computers and Electronics in Agriculture, 2012, 88, 32-43.	7.7	65
24	Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Research International, 2014, 62, 1113-1119.	6.2	59
25	Fish oil microencapsulation as influenced by spray dryer operational variables. International Journal of Food Science and Technology, 2013, 48, 1707-1713.	2.7	58
26	An attempt to cast light into starch nanocrystals preparation and cross-linking. Food Chemistry, 2013, 141, 1661-1666.	8.2	57
27	Niosome-loaded cold-set whey protein hydrogels. Food Chemistry, 2016, 196, 106-113.	8.2	54
28	A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends in Food Science and Technology, 2018, 71, 268-273.	15.1	53
29	Gelation characteristics of the sugar beet pectin solution charged with fish oil-loaded zein nanoparticles. Food Hydrocolloids, 2015, 43, 664-669.	10.7	52
30	Synbiotic yogurt-ice cream produced via incorporation of microencapsulated lactobacillus acidophilus (la-5) and fructooligosaccharide. Journal of Food Science and Technology, 2014, 51, 1568-1574.	2.8	51
31	Isolation of micro- and nano-crystalline cellulose particles and fabrication of crystalline particles-loaded whey protein cold-set gel. Food Chemistry, 2015, 174, 97-103.	8.2	51
32	Microemulsification–cold gelation of whey proteins for nanoencapsulation of date palm pit extract. Food Hydrocolloids, 2014, 35, 590-596.	10.7	50
33	The influence of brine concentration on chemical composition and texture of Iranian White cheese. Journal of Food Engineering, 2007, 81, 330-335.	5.2	49
34	Monitoring the Chemical and Textural Changes During Ripening of Iranian White Cheese Made with Different Concentrations of Starter. Journal of Dairy Science, 2006, 89, 3318-3325.	3.4	48
35	Effect of salts and nonionic surfactants on thermal characteristics of egg white proteins. International Journal of Biological Macromolecules, 2017, 102, 970-976.	7.5	48
36	Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Trends in Food Science and Technology, 2021, 107, 45-56.	15.1	47

#	Article	IF	CITATIONS
37	Preparation of cold water-soluble potato starch and its characterization. Journal of Food Science and Technology, 2014, 51, 601-605.	2.8	46
38	Determination of phenolic profile and antioxidant activity of pistachio hull using high-performance liquid chromatography–diode array detector–electro-spray ionization–mass spectrometry as affected by ultrasound and microwave. International Journal of Food Properties, 2017, 20, 19-29.	3.0	46
39	Effect of cream homogenization on textural characteristics of low-fat Iranian White cheese. International Dairy Journal, 2007, 17, 547-554.	3.0	44
40	Alkaline pH does not disrupt re-assembled casein micelles. Food Chemistry, 2009, 116, 929-932.	8.2	43
41	Structure of starch aerogel as affected by crosslinking and feasibility assessment of the aerogel for an anti-fungal volatile release. Food Chemistry, 2017, 221, 147-152.	8.2	43
42	Characterization of Carboxylated Cellulose Nanocrytals Isolated through Catalyst-Assisted H ₂ O ₂ Oxidation in a One-Step Procedure. Journal of Agricultural and Food Chemistry, 2018, 66, 7692-7700.	5.2	42
43	Microstructure and Rheological Properties of Iranian White Cheese Coagulated at Various Temperatures. Journal of Dairy Science, 2006, 89, 2359-2364.	3.4	41
44	Comparison of pH-dependent sonodisruption of re-assembled casein micelles by 35 and 130kHz ultrasounds. Journal of Food Engineering, 2009, 95, 505-509.	5.2	40
45	Influence of spray dryer parameters on exergetic performance of microencapsulation processs. International Journal of Exergy, 2012, 10, 267.	0.4	40
46	Formation mechanisms, handling and digestibility of food protein nanofibrils. Trends in Food Science and Technology, 2015, 45, 50-59.	15.1	40
47	Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles. Computers and Electronics in Agriculture, 2009, 68, 216-221.	7.7	39
48	Recovery of phenolic compounds from effluents by a microemulsion liquid membrane (MLM) extractor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 303-310.	4.7	37
49	The formation of non-heat-treated whey protein cold-set hydrogels via non-toxic chemical cross-linking. Food Hydrocolloids, 2017, 63, 43-49.	10.7	37
50	Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking. Food Chemistry, 2017, 237, 23-29.	8.2	36
51	Interface-related attributes of the Maillard reaction-born glycoproteins. Critical Reviews in Food Science and Nutrition, 2018, 58, 1595-1603.	10.3	36
52	Caffeine-loaded whey protein hydrogels reinforced with gellan and enriched with calcium chloride. International Dairy Journal, 2016, 56, 38-44.	3.0	35
53	Trans-free Iranian vanaspati through enzymatic and chemical transesterification of triple blends of fully hydrogenated soybean, rapeseed and sunflower oils. Food Chemistry, 2007, 102, 827-833.	8.2	34
54	Citric acid cross-linking of heat-set whey protein hydrogel influences its textural attributes and caffeine uptake and release behaviour. International Dairy Journal, 2016, 61, 142-147.	3.0	34

#	Article	IF	CITATIONS
55	Aflatoxin contamination level in Iran's pistachio nut during years 2009–2011. Food Control, 2013, 30, 540-544.	5.5	33
56	Transglutaminase-induced or citric acid-mediated cross-linking of whey proteins to tune the characteristics of subsequently desolvated sub-micron and nano-scaled particles. Journal of Microencapsulation, 2014, 31, 636-643.	2.8	33
57	Surface decoration of whey protein microgels through the Maillard conjugation with maltodextrin. Food Hydrocolloids, 2019, 91, 190-197.	10.7	32
58	Fabrication of whey protein–pectin conjugate particles through laccase-induced gelation of microemulsified nanodroplets. Food Hydrocolloids, 2014, 40, 189-195.	10.7	31
59	Potentially bioactive and caffeine-loaded peptidic sub-micron and nanoscalar particles. Journal of Functional Foods, 2014, 6, 462-469.	3.4	30
60	Bioactive whey peptide particles: An emerging class of nutraceutical carriers. Critical Reviews in Food Science and Nutrition, 2018, 58, 1468-1477.	10.3	30
61	Integrated optimization of fish oil microencapsulation process by spray drying. Journal of Microencapsulation, 2012, 29, 790-804.	2.8	29
62	Modulating the textural characteristics of whey protein nanofibril gels with different concentrations of calcium chloride. Journal of Dairy Research, 2016, 83, 109-114.	1.4	28
63	Engineered emulsions for obesity treatment. Trends in Food Science and Technology, 2016, 52, 90-97.	15.1	28
64	Enzymatic cross-linking of whey proteins in low fat Iranian white cheese. International Dairy Journal, 2013, 29, 88-92.	3.0	27
65	Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. LWT - Food Science and Technology, 2014, 57, 725-730.	5.2	27
66	Chemical composition and rheology of low-fat Iranian white cheese incorporated with guar gum and gum arabic as fat replacers. Journal of Food Science and Technology, 2014, 51, 2584-2591.	2.8	27
67	Influence of the Maillard reaction on the properties of cold-set whey protein and maltodextrin binary gels. International Dairy Journal, 2019, 90, 79-87.	3.0	27
68	Formulation of apple juice beverages containing whey protein isolate or whey protein hydrolysate based on sensory and physicochemical analysis. International Journal of Dairy Technology, 2015, 68, 70-78.	2.8	26
69	Modeling and Simulation of Deep-Bed Solar Greenhouse Drying of Chamomile Flowers. Drying Technology, 2015, 33, 684-695.	3.1	24
70	Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease. Journal of the Science of Food and Agriculture, 2011, 91, 2112-2116.	3.5	23
71	Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel. Food Chemistry, 2017, 214, 16-24.	8.2	23
72	Influence of whey protein and its hydrolysate on prehypertension andÂpostprandial hyperglycaemia in adult men. International Dairy Journal, 2013, 33, 62-66.	3.0	22

#	Article	IF	CITATIONS
73	Covalent β-lactoglobulin-maltodextrin amyloid fibril conjugate prepared by the Maillard reaction. Food Chemistry, 2021, 342, 128388.	8.2	22
74	Fast Protein Liquid Chromatography. Methods in Molecular Biology, 2011, 681, 439-447.	0.9	21
75	One-pot nanoparticulation of potentially bioactive peptides and gallic acid encapsulation. Food Chemistry, 2016, 210, 317-324.	8.2	21
76	Texture of nonfat yoghurt as influenced by whey protein concentrate and Gum Tragacanth as fat replacers. International Journal of Dairy Technology, 2009, 62, 405-410.	2.8	19
77	Pomegranate Seed Oilâ€Loaded Particles of the Zein Crossâ€Linked with Citric Acid. Journal of Food Process Engineering, 2015, 38, 49-56.	2.9	18
78	Structural Assessment and Catalytic Oxidation Activity of Hydrophobized Whey Proteins. Journal of Agricultural and Food Chemistry, 2018, 66, 12025-12033.	5.2	18
79	Development of an aqueous two-phase emulsion using hydrophobized whey proteins and erythritol. Food Hydrocolloids, 2019, 93, 351-360.	10.7	18
80	Food proteins are a potential resource for mining cathepsin L inhibitory drugs to combat SARS-CoV-2. European Journal of Pharmacology, 2020, 885, 173499.	3.5	18
81	Gelation by bioactives: Characteristics of the cold-set whey protein gels made using gallic acid. International Dairy Journal, 2021, 117, 104952.	3.0	18
82	An artificial neural network for predicting the physiochemical properties of fish oil microcapsules obtained by spray drying. Food Science and Biotechnology, 2013, 22, 677-685.	2.6	17
83	Interfacial and (emulsion) gel rheology of hydrophobised whey proteins. International Dairy Journal, 2020, 100, 104556.	3.0	17
84	Optimized preparation of ACE-inhibitory and antioxidative whey protein hydrolysate using response surface method. Dairy Science and Technology, 2012, 92, 641-653.	2.2	16
85	Functional and gel properties of whey protein nanofibrils as influenced by partial substitution with cellulose nanocrystal and alginate. International Dairy Journal, 2018, 81, 53-61.	3.0	16
86	Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloids, 2018, 82, 11-18.	10.7	16
87	Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 459-465.	2.4	15
88	Encapsulation of date palm pit extract via particulation of starch nanocrystals in a microemulsion. International Journal of Food Science and Technology, 2014, 49, 920-923.	2.7	15
89	Effect of whey protein concentrate addition on the physical properties of homogenized sweetened dairy creams. International Journal of Dairy Technology, 2008, 61, 183-191.	2.8	14
90	Enzymatic Modification to Stabilize the Fermented Milk Drink, <scp>D</scp> oogh. Journal of Texture Studies, 2015, 46, 22-33.	2.5	14

#	Article	IF	CITATIONS
91	Antioxidant Peptidic Particles for Delivery of Gallic Acid. Journal of Food Processing and Preservation, 2017, 41, e12767.	2.0	13
92	Stability and Rheological Properties of Suspended Pulp Particles Containing Orange Juice Stabilized by Gellan Gum. Journal of Dispersion Science and Technology, 2014, 35, 1222-1229.	2.4	11
93	Optimised production and spray drying of ACE-inhibitory enzyme-modified cheese. Journal of Dairy Research, 2016, 83, 125-134.	1.4	11
94	Fast Protein Liquid Chromatography. Methods in Molecular Biology, 2017, 1485, 365-373.	0.9	11
95	Encapsulation of β-lactoglobulin within calcium carbonate microparticles and subsequent in situ fabrication of protein microparticles. Food Hydrocolloids, 2018, 84, 38-46.	10.7	11
96	One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles. Journal of Agricultural and Food Chemistry, 2016, 64, 1575-1582.	5.2	10
97	Calcium and chitosan-mediated clustering of whey protein particles for tuning their colloidal stability and flow behaviour. International Dairy Journal, 2017, 73, 136-143.	3.0	10
98	CaCl2 supplementation of hydrophobised whey proteins: Assessment of protein particles and consequent emulsions. International Dairy Journal, 2020, 110, 104815.	3.0	10
99	All-aqueous emulsions as miniaturized chemical reactors in the food and bioprocess technology. Current Opinion in Food Science, 2020, 33, 165-172.	8.0	10
100	Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties. Food Research International, 2022, 156, 111306.	6.2	10
101	Effect of heat treatment on foaming properties of ostrich (Struthio camelus) egg white proteins. International Journal of Food Properties, 2017, 20, 3159-3169.	3.0	8
102	Influence of seeding and stirring on the structural properties and formation yield of whey protein microgels. International Dairy Journal, 2018, 79, 43-51.	3.0	8
103	A network-based fuzzy inference system for sonodisruption process of re-assembled casein micelles. Journal of Food Engineering, 2010, 98, 224-229.	5.2	7
104	Spray drying of <scp>ACE</scp> â€inhibitory enzymeâ€modified white cheese. International Journal of Food Science and Technology, 2013, 48, 2276-2282.	2.7	7
105	Acid-induced gelation behavior of casein/whey protein solutions assessed by oscillatory rheology. Journal of Food Science and Technology, 2014, 51, 2113-2119.	2.8	7
106	Food protein-derived antihypertensive peptides in the COVID-19 pandemic: friends of foes?. Journal of Hypertension, 2020, 38, 1614-1616.	0.5	7
107	Enzymatic cross-linking of soy proteins within non-fat set yogurt gel. Journal of Dairy Research, 2014, 81, 378-384.	1.4	6
108	Tailor it up! How we are rolling towards designing the functionality of emulsions in the mouth and gastrointestinal tract. Current Opinion in Food Science, 2020, 31, 126-135.	8.0	6

#	Article	IF	CITATIONS
109	Effects of acetyl grafting on the structural and functional properties of whey protein microgels. Food Hydrocolloids, 2021, 112, 106443.	10.7	5
110	Nanocarriers, Films and Composites Based on Milk Proteins. Advanced Structured Materials, 2013, , 169-191.	0.5	2
111	Micron and Submicron-Sized Whey Protein–Pectin Aggregates Generated Via Alkali-Catalyzed Chemical Crosslinking. Journal of Dispersion Science and Technology, 2015, 36, 154-159.	2.4	2
112	Effect of surfactant addition on particle properties of whey proteins and their subsequent complexation with salivary proteins. International Dairy Journal, 2018, 87, 107-113.	3.0	2