Muhammad Ajaz Hussain

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/9369629/muhammad-ajaz-hussain-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

36

g-index

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

93 1,633 24 h-index

98 1,943 4.5 4.88 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
93	Unconventional Cellulose Esters: Synthesis, Characterization and Structure P roperty Relations. <i>Cellulose</i> , 2003 , 10, 283-296	5.5	110
92	Structure characterization and carboxymethylation of arabinoxylan isolated from Ispaghula (Plantago ovata) seed husk. <i>Carbohydrate Polymers</i> , 2008 , 74, 309-317	10.3	96
91	Acylation of Cellulose with N,N?-Carbonyldiimidazole-Activated Acids in the Novel Solvent Dimethyl Sulfoxide/Tetrabutylammonium Fluoride. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 916-920	4.8	96
90	Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on-off switching and drug release. <i>Carbohydrate Polymers</i> , 2016 , 136, 750-6	10.3	66
89	Synthesis of #Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 3549-61	8.3	60
88	Alhagi: a plant genus rich in bioactives for pharmaceuticals. <i>Phytotherapy Research</i> , 2015 , 29, 1-13	6.7	52
87	Evaluation of hot-water extracted arabinoxylans from ispaghula seeds as drug carriers. <i>Carbohydrate Polymers</i> , 2011 , 83, 1218-1225	10.3	48
86	Molecular docking studies and biological evaluation of chalcone based pyrazolines as tyrosinase inhibitors and potential anticancer agents. <i>RSC Advances</i> , 2015 , 5, 46330-46338	3.7	41
85	A comprehensive review of phytochemical profile, bioactives for pharmaceuticals, and pharmacological attributes of Azadirachta indica. <i>Phytotherapy Research</i> , 2018 , 32, 1241-1272	6.7	41
84	A superporous and superabsorbent glucuronoxylan hydrogel from quince (Cydonia oblanga): Stimuli responsive swelling, on-off switching and drug release. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 138-144	7.9	41
83	Cydonia oblonga M., A Medicinal Plant Rich in Phytonutrients for Pharmaceuticals. <i>Frontiers in Pharmacology</i> , 2016 , 7, 163	5.6	39
82	Psyllium Arabinoxylan: A Versatile Biomaterial for Potential Medicinal and Pharmaceutical Applications. <i>Polymer Reviews</i> , 2016 , 56, 1-30	14	37
81	Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. <i>International Journal of Nanomedicine</i> , 2017 , 12, 2845-2855	7.3	36
80	Mimosa pudica L., a High-Value Medicinal Plant as a Source of Bioactives for Pharmaceuticals. <i>Comprehensive Reviews in Food Science and Food Safety,</i> 2016 , 15, 303-315	16.4	34
79	Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. <i>Chemical Biology and Drug Design</i> , 2017 , 90, 443-449	2.9	33
78	Capparis spinosa L.: A Plant with High Potential for Development of Functional Foods and Nutraceuticals/Pharmaceuticals. <i>International Journal of Pharmacology</i> , 2016 , 12, 201-219	0.7	31
77	Biological evaluation of synthetic flunsaturated carbonyl based cyclohexanone derivatives as neuroprotective novel inhibitors of acetylcholinesterase, butyrylcholinesterase and amyloid-laggregation. <i>Bioorganic and Medicinal Chemistry</i> , 2016 , 24, 2352-9	3.4	30

(2015-2017)

76	Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption. <i>International Journal of Biological Macromolecules</i> , 2017 , 102, 170-180	7.9	29
75	Structure Determination of Cellulose Esters via Subsequent Functionalization and NMR Spectroscopy. <i>Macromolecular Symposia</i> , 2005 , 223, 79-92	0.8	29
74	Polysaccharide-Based Superporous, Superabsorbent, and Stimuli Responsive Hydrogel from Sweet Basil: A Novel Material for Sustained Drug Release. <i>Advances in Polymer Technology</i> , 2019 , 2019, 1-11	1.9	29
73	Cellulose ether derivatives: a new platform for prodrug formation of fluoroquinolone antibiotics. <i>Cellulose</i> , 2015 , 22, 2011-2022	5.5	27
72	Polysaccharide based superabsorbent hydrogel from Mimosa pudica: swelling@eswelling and drug release. <i>RSC Advances</i> , 2016 , 6, 23310-23317	3.7	26
71	Glucuronoxylan-mediated silver nanoparticles: green synthesis, antimicrobial and wound healing applications. <i>RSC Advances</i> , 2017 , 7, 42900-42908	3.7	26
7º	Calixarene: A Versatile Material for Drug Design and Applications. <i>Current Pharmaceutical Design</i> , 2017 , 23, 2377-2388	3.3	26
69	Quince seed hydrogel (glucuronoxylan): Evaluation of stimuli responsive sustained release oral drug delivery system and biomedical properties. <i>Journal of Drug Delivery Science and Technology</i> , 2018 , 45, 455-465	4.5	22
68	Polysaccharide-based materials in macromolecular prodrug design and development. <i>International Materials Reviews</i> , 2017 , 62, 78-98	16.1	21
67	Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. <i>Designed Monomers and Polymers</i> , 2017 , 20, 485-495	3.1	20
66	Evaluation of superabsorbent linseed-polysaccharides as a novel stimuli-responsive oral sustained release drug delivery system. <i>Drug Development and Industrial Pharmacy</i> , 2017 , 43, 409-420	3.6	20
65	One pot light assisted green synthesis, storage and antimicrobial activity of dextran stabilized silver nanoparticles. <i>Journal of Nanobiotechnology</i> , 2014 , 12, 53	9.4	20
64	Me3N-promoted synthesis of 2,3,4,4a-tetrahydroxanthen-1-one: preparation of thiosemicarbazone derivatives, their solid state self-assembly and antimicrobial properties. <i>New Journal of Chemistry</i> , 2015 , 39, 9351-9357	3.6	19
63	Extended release and enhanced bioavailability of moxifloxacin conjugated with hydrophilic cellulose ethers. <i>Carbohydrate Polymers</i> , 2016 , 136, 1297-306	10.3	19
62	Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. <i>Chemical Biology and Drug Design</i> , 2018 , 92, 1859-1866	2.9	19
61	Unconventional synthesis and characterization of novel abietic acid esters of hydroxypropylcellulose as potential macromolecular prodrugs. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 747-752	2.5	18
60	Fabrication, characterization, thermal stability and nanoassemblies of novel pullulan-aspirin conjugates. <i>Arabian Journal of Chemistry</i> , 2017 , 10, S1597-S1603	5.9	17
59	Novel high-loaded, nanoparticulate and thermally stable macromolecular prodrug design of NSAIDs based on hydroxypropylcellulose. <i>Cellulose</i> , 2015 , 22, 461-471	5.5	16

58	Evaluation of multifunctional synthetic tetralone derivatives for treatment of Alzheimer B disease. <i>Chemical Biology and Drug Design</i> , 2016 , 88, 889-898	2.9	16
57	Capparis decidua Edgew (Forssk.): A comprehensive review of its traditional uses, phytochemistry, pharmacology and nutrapharmaceutical potential. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 1901-1916	5.9	16
56	Unconventional Synthesis of Pullulan Abietates. <i>Polymer Bulletin</i> , 2008 , 60, 775-783	2.4	15
55	Synthesis and Characterization of Cellulose Lipoates: A Novel Material for Adsorption onto Gold. <i>Polymer Bulletin</i> , 2006 , 57, 857-863	2.4	15
54	Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles. <i>International Journal of Nanomedicine</i> , 2015 , 10, 2079-88	7.3	13
53	L.: Insights into the phytochemical profile, therapeutic potential, clinical trials, and future prospective. <i>Iranian Journal of Basic Medical Sciences</i> , 2020 , 23, 1501-1526	1.8	13
52	Designing novel bioconjugates of hydroxyethyl cellulose and salicylates for potential pharmaceutical and pharmacological applications. <i>International Journal of Biological Macromolecules</i> , 2017 , 103, 441-450	7.9	12
51	A stimuli-responsive, superporous and non-toxic smart hydrogel from seeds of mugwort (): stimuli responsive swelling/deswelling, intelligent drug delivery and enhanced aceclofenac bioavailability <i>RSC Advances</i> , 2020 , 10, 19832-19843	3.7	12
50	Macromolecular prodrugs of aspirin with HPMC: A nano particulate drug design, characterization, and pharmacokinetic studies. <i>Macromolecular Research</i> , 2011 , 19, 1296-1302	1.9	12
49	An efficient acetylation of dextran using in situ activated acetic anhydride with iodine. <i>Journal of the Serbian Chemical Society</i> , 2010 , 75, 165-173	0.9	12
48	Linseed polysaccharides based nanoparticles for controlled delivery of docetaxel: Design, in vitro drug release and cellular uptake. <i>Journal of Drug Delivery Science and Technology</i> , 2019 , 49, 143-151	4.5	12
47	Multiple cross-linked hydroxypropylcelluloseBuccinateBalicylate: prodrug design, characterization, stimuli responsive swellingBeswelling and sustained drug release. <i>RSC Advances</i> , 2015 , 5, 43440-43448	3.7	11
46	Hydroxypropylcellulose-aceclofenac conjugates: high covalent loading design, structure characterization, nano-assemblies and thermal kinetics. <i>Cellulose</i> , 2013 , 20, 717-725	5.5	11
45	HPMC-salicylate conjugates as macromolecular prodrugs: Design, characterization, and nano-rods formation. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 4202-4208	2.5	11
44	Stimuli-responsive/smart tablet formulations (under simulated physiological conditions) for oral drug delivery system based on glucuronoxylan polysaccharide. <i>Drug Development and Industrial Pharmacy</i> , 2020 , 46, 122-134	3.6	11
43	Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, drug release and real-time floating detection. <i>Saudi Pharmaceutical Journal</i> , 2020 , 28, 538-549	4.4	10
42	Design, characterization and appraisal of chemically modified polysaccharide based mucilage from Ocimum basilicum (basil) seeds for the removal of Cd(II) from spiked high-hardness ground water. <i>Journal of Molecular Liquids</i> , 2019 , 274, 15-24	6	10
41	Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater. <i>Journal of Environmental Sciences</i> , 2015 , 37, 51-8	6.4	9

[-2020]

olications of ibuprofen conjugates		
679 3. ₁		3
	8	3
	· - 7	7
a napus L.) under saline	7	7
	7	7
) (5
rnal of the Chilean Chemical	. 6	5
1 () 5	5
1 1 1 1 1 1 1 1 1	; 5	5
el from psyllium () for intelligent	, <u>,</u>	5
Polymers and Polymeric Composites,	ó ∠	1
)	1
diclofenac with dextran. <i>Pakistan</i>	ļ 4	1
ein of cataractous eye lens	3	3
) 3	3
	; 3	3
	3	3
	eed for potential use in drug 3, 54, ers a superabsorbent, relling and zero-order drug 2.7 a napus L.) under saline 3.8 ides activated with iodine. 3-143 ofloxacin for extended release acromolecules, 2018, 113, 719-728 rnal of the Chilean Chemical 2.5 OM SEEDS OF OCIMUM 2.7 el from psyllium () for intelligent 3.7 olymers and Polymeric Composites, ontelligent drug delivery: On-Off chanistic studies. Industrial Crops diclofenac with dextran. Pakistan 2.6 categies, chemical profiling and 48-6365 ked polysaccharide-based ked polysaccharide-based	seed for potential use in drug 3, 54, ers a superabsorbent, relling and zero-order drug 2.7 anapus L.) under saline 3.8 offloxacin for extended release acromolecules, 2018, 113, 719-728 offloxacin for extended release acromolecules,

22	http://www.deswater.com/DWT_abstracts/vol_104/104_2018_0.pdf104, 149-158		3
21	Hydroxypropylcellulose-flurbiprofen conjugates: design, characterization, anti-inflammatory activity and enhanced bioavailability. <i>Saudi Pharmaceutical Journal</i> , 2020 , 28, 869-875	4.4	2
20	Evaluation of Ligustrazine-Based Synthetic Compounds for their Antiproliferative Effects. <i>Medicinal Chemistry</i> , 2021 , 17, 956-962	1.8	2
19	ACUTE TOXICITY STUDIES OF GLUCURONOXYLAN POLYSACCHARIDES FROM SEEDS OF QUINCE (CYDONIA OBLONGA). <i>Cellulose Chemistry and Technology</i> , 2019 , 53, 721-729	1.9	2
18	Flurbiprofen conjugates based on hydroxyethylcellulose: Synthesis, characterization, pharmaceutical and pharmacological applications. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 2101-2109	5.9	2
17	Sodium hyroxyethylcellulose adipate: An efficient and reusable sorbent for cadmium uptake from spiked high-hardness ground water. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 2766-2777	5.9	2
16	Fabrication, characterization, appraisal of bioavailability and immunomodulatory potential of aceclofenac prodrugs based on hydroxyethylcellulose. <i>Journal of Drug Delivery Science and Technology</i> , 2019 , 52, 856-862	4.5	1
15	Design, characterization and enhanced bioavailability of hydroxypropylcellulose-naproxen conjugates. <i>Arabian Journal of Chemistry</i> , 2020 , 13, 5717-5723	5.9	1
14	Algal Biofertilizer 2021 , 607-635		1
13	Appraisal of acute oral toxicity of glucuronoxylan hydrogel from Mimosa pudica seeds. <i>Brazilian Journal of Pharmaceutical Sciences</i> , 2018 , 54,	1.8	1
12	Metal Complexation of Arabinoxylan Engenders a Smart Material Offering pH, Solvents, and Salt Responsive On ID of Swelling with the Potential for Sustained Drug Delivery. <i>Gels</i> , 2022 , 8, 283	4.2	1
11	"COMPARATIVE ISOCONVERSIONAL THERMAL ANALYSIS AND DEGRADATION KINETICS OF SALVIA SPINOSA (KANOCHA) SEED HYDROGEL AND ITS ACETATES: A POTENTIAL MATRIX FOR SUSTAINED DRUG RELEASE". <i>Cellulose Chemistry and Technology</i> , 2022 , 56, 239-250	1.9	1
10	Gastroretentive floating matrix tablets of cephradine based on psyllium husk. <i>Bioinspired, Biomimetic and Nanobiomaterials</i> , 2019 , 8, 206-215	1.3	0
9	Fabrication, Characterization and Toxicity Evaluation of Chemically Cross linked Polymeric Network for Sustained Delivery of Metoprolol Tartrate <i>Designed Monomers and Polymers</i> , 2021 , 24, 351-361	3.1	O
8	Quince Seed Mucilage: A Stimuli-Responsive/Smart Biopolymer. <i>Polymers and Polymeric Composites</i> , 2019 , 1-22	0.6	0
7	Synthesis and characterization of thiol modified beta cyclodextrin, its biocompatible analysis and application as a modified release carrier of ticagrelor. <i>Biomedical Materials (Bristol)</i> , 2020 , 16, 015023	3.5	O
6	Comparative isoconversional thermal analysis of Artemisia vulgaris hydrogel and its acetates; a potential matrix for sustained drug delivery. <i>International Journal of Polymer Analysis and Characterization</i> , 2020 , 25, 529-538	1.7	О
5	Chitosan based controlled release drug delivery of mycophenolate mofetil loaded in nanocarriers system: synthesis and evaluation. <i>Drug Development and Industrial Pharmacy</i> , 2021 , 47, 477-483	3.6	O

LIST OF PUBLICATIONS

4	Synthesis of Thiol-Modified Hemicellulose, its Biocompatibility, Studies, and Appraisal as a Sustained Release Carrier of Ticagrelor. <i>Frontiers in Pharmacology</i> , 2021 , 12, 550020	5.6	0
3	Polysaccharide-Based Liquid Crystals 2021 , 573-590		
2	Esterification of Salicylic acid with Succinylated Dextran Using ZrOCl2.8H2O over MCM-41: A Novel Strategy to Design Polysaccharide-Based Macromolecular Prodrugs. <i>Arabian Journal for Science and Engineering</i> , 2021 , 46, 5583-5591	2.5	
1	Formulation, In Vitro Evaluation, and Toxicity Studies of A. vulgaris-co-AAm Carrier for Vildagliptin. <i>Advances in Polymer Technology</i> , 2021 , 2021, 1-17	1.9	