Xiaoxiao Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369620/publications.pdf

Version: 2024-02-01

45

all docs

44 2,600 25
papers citations h-index

45

docs citations

h-index g-index

45
4071
times ranked citing authors

233125

45

#	Article	IF	CITATIONS
1	DNA aptamer S11e recognizes fibrosarcoma and acts as a tumor suppressor. Bioactive Materials, 2022, 12, 278-291.	8.6	6
2	Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Medicinal Research Reviews, 2022, 42, 1037-1063.	5.0	33
3	An enzyme-activated two-photon ratiometric fluorescent probe with lysosome targetability for imaging \hat{l}^2 -glucuronidase in colon cancer cells and tissue. Analytica Chimica Acta, 2022, 1192, 339354.	2.6	10
4	Clinical Effect of Retroperitoneal Laparoscopic Radical Nephrectomy on Renal Cell Carcinoma, the Influence of Renal Function, and the Influencing Factors of Recurrence. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-8.	0.5	3
5	Multicolor Twoâ€Photon Nanosystem for Multiplexed Intracellular Imaging and Targeted Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 12569-12576.	7.2	40
6	Multicolor Twoâ€Photon Nanosystem for Multiplexed Intracellular Imaging and Targeted Cancer Therapy. Angewandte Chemie, 2021, 133, 12677-12684.	1.6	6
7	Chemo-drug Controlled-release Strategies of Nanocarrier in the Development of Cancer Therapeutics. Current Medicinal Chemistry, 2021, 28, 6307-6322.	1.2	5
8	Specific Core–Satellite Nanocarriers for Enhanced Intracellular ROS Generation and Synergistic Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5403-5412.	4.0	23
9	In Vivo Monocyte/Macrophage-Hitchhiked Intratumoral Accumulation of Nanomedicines for Enhanced Tumor Therapy. Journal of the American Chemical Society, 2020, 142, 382-391.	6.6	97
10	A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nature Chemistry, 2020, 12, 381-390.	6.6	122
11	Biomimetic Carriers Based on Giant Membrane Vesicles for Targeted Drug Delivery and Photodynamic/Photothermal Synergistic Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43811-43819.	4.0	26
12	Tumor Extracellular pH-Driven Cancer-Selective Artificial Receptor-Mediated Tumor-Targeted Fluorescence Imaging. Analytical Chemistry, 2019, 91, 13349-13354.	3.2	6
13	Nanoscale Metal–Organic Framework Based Two-Photon Sensing Platform for Bioimaging in Live Tissue. Analytical Chemistry, 2019, 91, 2727-2733.	3.2	63
14	Smart Nanodrug with Nuclear Localization Sequences in the Presence of MMPâ€⊋ To Overcome Biobarriers and Drug Resistance. Chemistry - A European Journal, 2019, 25, 1895-1900.	1.7	19
15	Zinc-substituted hemoglobin with specific drug binding sites and fatty acid resistance ability for enhanced photodynamic therapy. Nano Research, 2019, 12, 1880-1887.	5.8	15
16	Engineering Self-Calibrating Nanoprobes with Two-Photon-Activated Fluorescence Resonance Energy Transfer for Ratiometric Imaging of Biological Selenocysteine. ACS Applied Materials & Diterfaces, 2019, 11, 17722-17729.	4.0	24
17	Single-molecule DNA logic nanomachines based on origami. Science China Chemistry, 2019, 62, 407-408.	4.2	5
18	Engineering of Bioinspired, Size-Controllable, Self-Degradable Cancer-Targeting DNA Nanoflowers via the Incorporation of an Artificial Sandwich Base. Journal of the American Chemical Society, 2019, 141, 4282-4290.	6.6	133

#	Article	IF	Citations
19	Photoresponsive Biomimetic Protocells for Near-Infrared-Light-Regulated Phototheranostics. CCS Chemistry, 2019, 1, 490-501.	4.6	25
20	Isotopic graphene–isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chemical Science, 2018, 9, 2842-2849.	3.7	51
21	Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4678-4683.	3.3	118
22	Simultaneous Application of Photothermal Therapy and an Antiâ€inflammatory Prodrug using Pyrene–Aspirinâ€Loaded Gold Nanorod Graphitic Nanocapsules. Angewandte Chemie - International Edition, 2018, 57, 177-181.	7.2	169
23	Simultaneous Application of Photothermal Therapy and an Antiâ€inflammatory Prodrug using Pyrene–Aspirinâ€Loaded Gold Nanorod Graphitic Nanocapsules. Angewandte Chemie, 2018, 130, 183-187.	1.6	28
24	Surfactant-Free Interface Suspended Gold Graphitic Surface-Enhanced Raman Spectroscopy Substrate for Simultaneous Multiphase Analysis. Analytical Chemistry, 2018, 90, 11183-11187.	3.2	21
25	Molecular Recognition and In-Vitro-Targeted Inhibition of Renal Cell Carcinoma Using a DNA Aptamer. Molecular Therapy - Nucleic Acids, 2018, 12, 758-768.	2.3	34
26	In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nature Communications, 2017, 8, 15653.	5.8	41
27	Circular Bivalent Aptamers Enable <i>in Vivo</i> Stability and Recognition. Journal of the American Chemical Society, 2017, 139, 9128-9131.	6.6	156
28	Smart Humanâ€Serumâ€Albumin–As ₂ O ₃ Nanodrug with Selfâ€Amplified Folate Receptorâ€Targeting Ability for Chronic Myeloid Leukemia Treatment. Angewandte Chemie - International Edition, 2017, 56, 10845-10849.	7.2	64
29	Smart Humanâ€Serumâ€Albumin–As ₂ O ₃ Nanodrug with Selfâ€Amplified Folate Receptorâ€Targeting Ability for Chronic Myeloid Leukemia Treatment. Angewandte Chemie, 2017, 129, 10985-10989.	1.6	5
30	Selection and characterization of DNA aptamer against glucagon receptor by cell-SELEX. Scientific Reports, 2017, 7, 7179.	1.6	32
31	Dicyanomethylene Substituted Benzothiazole Squaraines: The Efficiency of Photodynamic Therapy In Vitro and In Vivo. EBioMedicine, 2017, 23, 25-33.	2.7	33
32	Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications. Sensors, 2017, 17, 1736.	2.1	51
33	A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie - International Edition, 2016, 55, 5477-5482.	7.2	471
34	Screening and identification of DNA aptamers toward Schistosoma japonicum eggs via SELEX. Scientific Reports, 2016, 6, 24986.	1.6	22
35	Overexpression of <scp>WDR</scp> 79 in nonâ€small cell lung cancer is linked to tumour progression. Journal of Cellular and Molecular Medicine, 2016, 20, 698-709.	1.6	15
36	A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues. Analytica Chimica Acta, 2016, 937, 136-142.	2.6	47

#	Article	IF	CITATION
37	A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. Journal of the American Chemical Society, 2016, 138, 12368-12374.	6.6	194
38	Rücktitelbild: A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells (Angew. Chem. 18/2016). Angewandte Chemie, 2016, 128, 5702-5702.	1.6	3
39	A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie, 2016, 128, 5567-5572.	1.6	75
40	A FRET-based ratiometric two-photon fluorescent probe for dual-channel imaging of nitroxyl in living cells and tissues. Chemical Communications, 2016, 52, 733-736.	2.2	68
41	Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget, 2016, 7, 36436-36446.	0.8	43
42	STIP overexpression confers oncogenic potential to humanÂnonâ€small cell lung cancer cells by regulating cell cycle and apoptosis. Journal of Cellular and Molecular Medicine, 2015, 19, 2806-2817.	1.6	7
43	Targeting tumor suppressor genes for cancer therapy. BioEssays, 2015, 37, 1277-1286.	1.2	65
44	DNA Aptamer Selected against Pancreatic Ductal Adenocarcinoma for <i>in vivo</i> Imaging and Clinical Tissue Recognition. Theranostics, 2015, 5, 985-994.	4.6	119