
## Daniel R Schoenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369378/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cytoplasmic mRNA Recapping: An Unexpected Form of RNA Repair. , 2021, , 109-130.                                                                                                              |      | 1         |
| 2  | Inhibition of cytoplasmic cap methylation identifies 5′ TOP mRNAs as recapping targets and reveals recapping sites downstream of native 5′ ends. Nucleic Acids Research, 2020, 48, 3806-3815. | 6.5  | 11        |
| 3  | Cytoplasmic mRNA recapping has limited impact on proteome complexity. Open Biology, 2020, 10, 200313.                                                                                         | 1.5  | 5         |
| 4  | Analyzing (Re)Capping of mRNA Using Transcript Specific 5' End Sequencing. Bio-protocol, 2020, 10, e3791.                                                                                     | 0.2  | 4         |
| 5  | A recap of RNA recapping. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1504.                                                                                                               | 3.2  | 52        |
| 6  | Loss of fragile histidine triad (Fhit) protein expression alters the translation of cancer-associated mRNAs. BMC Research Notes, 2018, 11, 178.                                               | 0.6  | 4         |
| 7  | RNA Cap Methyltransferase Activity Assay. Bio-protocol, 2018, 8, .                                                                                                                            | 0.2  | 3         |
| 8  | RNA-binding proteins and heat-shock protein 90 are constituents of the cytoplasmic capping enzyme interactome. Journal of Biological Chemistry, 2018, 293, 16596-16607.                       | 1.6  | 7         |
| 9  | Identification of Fhit as a post-transcriptional effector of Thymidine Kinase 1 expression. Biochimica Et<br>Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 374-382.               | 0.9  | 10        |
| 10 | RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Nucleic<br>Acids Research, 2017, 45, 10726-10739.                                                 | 6.5  | 49        |
| 11 | Impact of FHIT loss on the translation of cancer-associated mRNAs. Molecular Cancer, 2017, 16, 179.                                                                                           | 7.9  | 20        |
| 12 | The human PMR1 endonuclease stimulates cell motility by down regulating miR-200 family microRNAs.<br>Nucleic Acids Research, 2016, 44, 5811-5819.                                             | 6.5  | 12        |
| 13 | Cap homeostasis is independent of poly(A) tail length. Nucleic Acids Research, 2016, 44, 304-314.                                                                                             | 6.5  | 24        |
| 14 | Uncapped 5′ ends of mRNAs targeted by cytoplasmic capping map to the vicinity of downstream CAGE tags. FEBS Letters, 2015, 589, 279-284.                                                      | 1.3  | 22        |
| 15 | The Cytoplasmic Capping Complex Assembles on Adapter Protein Nck1 Bound to the Proline-Rich<br>C-Terminus of Mammalian Capping Enzyme. PLoS Biology, 2014, 12, e1001933.                      | 2.6  | 35        |
| 16 | Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nature Medicine, 2014, 20, 992-1000.                       | 15.2 | 113       |
| 17 | Quantitative Analysis of Deadenylation-Independent mRNA Decay by a Modified MBRACE Assay. Methods<br>in Molecular Biology, 2014, 1125, 353-371.                                               | 0.4  | 0         |
| 18 | SMG6 Cleavage Generates Metastable Decay Intermediates from Nonsense-Containing β-Globin mRNA.<br>PLoS ONE, 2013, 8, e74791.                                                                  | 1.1  | 16        |

DANIEL R SCHOENBERG

| #  | Article                                                                                                                                                                                                                                                                   | IF       | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 19 | Identification of the human PMR1 mRNA endonuclease as an alternatively processed product of the gene for peroxidasin-like protein. Rna, 2012, 18, 1186-1196.                                                                                                              | 1.6      | 7         |
| 20 | Identification of Cytoplasmic Capping Targets Reveals a Role for Cap Homeostasis in Translation and mRNA Stability. Cell Reports, 2012, 2, 674-684.                                                                                                                       | 2.9      | 71        |
| 21 | Regulation of cytoplasmic mRNA decay. Nature Reviews Genetics, 2012, 13, 246-259.                                                                                                                                                                                         | 7.7      | 542       |
| 22 | Mechanisms of endonucleaseâ€mediated mRNA decay. Wiley Interdisciplinary Reviews RNA, 2011, 2,<br>582-600.                                                                                                                                                                | 3.2      | 62        |
| 23 | <i>Mycobacterium tuberculosis</i> lipomannan blocks TNF biosynthesis by regulating macrophage<br>MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proceedings of the National Academy of<br>Sciences of the United States of America, 2011, 108, 17408-17413. | 3.3      | 255       |
| 24 | RNA processing defects associated with diseases of the motor neuron. Muscle and Nerve, 2010, 41, 5-17.                                                                                                                                                                    | 1.0      | 35        |
| 25 | Identification of a Cytoplasmic Complex That Adds a Cap onto 5′-Monophosphate RNA. Molecular and<br>Cellular Biology, 2009, 29, 2155-2167.                                                                                                                                | 1.1      | 103       |
| 26 | The cytoskeleton-associated Ena/VASP proteins are unanticipated partners of the PMR1 mRNA endonuclease. Rna, 2009, 15, 576-587.                                                                                                                                           | 1.6      | 8         |
| 27 | Re-capping the message. Trends in Biochemical Sciences, 2009, 34, 435-442.                                                                                                                                                                                                | 3.7      | 87        |
| 28 | KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells. BMC Cell Biology, 2009, 10, 70.                                                                                                                              | 3.0      | 25        |
| 29 | Common SNP in <i>pre-miR-146a</i> decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7269-7274.                                                  | 3.3      | 792       |
| 30 | The 90-kDa Heat Shock Protein Stabilizes the Polysomal Ribonuclease 1 mRNA Endonuclease to Degradation by the 26S Proteasome. Molecular Biology of the Cell, 2008, 19, 546-552.                                                                                           | 0.9      | 11        |
| 31 | Chapter 13 Approaches for Studying PMR1 Endonuclease–mediated mRNA Decay. Methods in<br>Enzymology, 2008, 448, 241-263.                                                                                                                                                   | 0.4      | 7         |
| 32 | Chapter 24 Assays for Determining Poly(A) Tail Length and the Polarity of mRNA Decay in Mammalian<br>Cells. Methods in Enzymology, 2008, 448, 483-504.                                                                                                                    | 0.4      | 45        |
| 33 | In Vivo and In Vitro Analysis of Poly(A) Length Effects on mRNA Translation. Methods in Molecular<br>Biology, 2008, 419, 215-230.                                                                                                                                         | 0.4      | 19        |
| 34 | Application of the Invader® RNA Assay to the Polarity of Vertebrate mRNA Decay. Methods in<br>Molecular Biology, 2008, 419, 259-276.                                                                                                                                      | 0.4      | 3         |
| 35 | A+U-Rich Instability Elements Differentially Activate 5′-3′ and 3′-5′ mRNA Decay. Molecular and Cellula<br>Biology, 2007, 27, 2791-2799.                                                                                                                                  | r<br>1.1 | 53        |
| 36 | c-Src Activates Endonuclease-Mediated mRNA Decay. Molecular Cell, 2007, 25, 779-787.                                                                                                                                                                                      | 4.5      | 19        |

## DANIEL R SCHOENBERG

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Identification of a novel noncoding RNA gene,NAMA, that is downregulated in papillary thyroid carcinoma withBRAFmutation and associated with growth arrest. International Journal of Cancer, 2007, 121, 767-775.                                     | 2.3 | 53        |
| 38 | The end defines the means in bacterial mRNA decay. Nature Chemical Biology, 2007, 3, 535-536.                                                                                                                                                        | 3.9 | 24        |
| 39 | RNA helicase A is necessary for translation of selected messenger RNAs. Nature Structural and<br>Molecular Biology, 2006, 13, 509-516.                                                                                                               | 3.6 | 184       |
| 40 | Polysome-Bound Endonuclease PMR1 Is Targeted to Stress Granules via Stress-Specific Binding to TIA-1.<br>Molecular and Cellular Biology, 2006, 26, 8803-8813.                                                                                        | 1.1 | 35        |
| 41 | Correction: A role for the elF4E-binding protein 4E-T in P-body formation and mRNA decay. Journal of<br>Cell Biology, 2005, 171, 175-175.                                                                                                            | 2.3 | 0         |
| 42 | A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. Journal of Cell Biology, 2005, 170, 913-924.                                                                                                                           | 2.3 | 210       |
| 43 | mRNA with a <20-nt poly(A) tail imparted by the poly(A)-limiting element is translated as efficiently in vivo as long poly(A) mRNA. Rna, 2005, 11, 1131-1140.                                                                                        | 1.6 | 31        |
| 44 | The poly(A)-limiting element enhances mRNA accumulation by increasing the efficiency of pre-mRNA 3' processing. Rna, 2005, 11, 958-965.                                                                                                              | 1.6 | 7         |
| 45 | Microsomal Triglyceride Transfer Protein Promotes the Secretion of Xenopus laevis Vitellogenin A1.<br>Journal of Biological Chemistry, 2005, 280, 13902-13905.                                                                                       | 1.6 | 32        |
| 46 | Application of Ligation-Mediated Reverse Transcription Polymerase Chain Reaction to the<br>Identification of In Vivo Endonuclease-Generated Messenger RNA Decay Intermediates. , 2004, 257,<br>213-222.                                              |     | 3         |
| 47 | Endonuclease-mediated mRNA Decay Requires Tyrosine Phosphorylation of Polysomal Ribonuclease 1<br>(PMR1) for the Targeting and Degradation of Polyribosome-bound Substrate mRNA. Journal of<br>Biological Chemistry, 2004, 279, 48993-49002.         | 1.6 | 22        |
| 48 | Endonuclease-Mediated mRNA Decay Involves the Selective Targeting of PMR1 to Polyribosome-Bound Substrate mRNA. Molecular Cell, 2004, 14, 435-445.                                                                                                   | 4.5 | 36        |
| 49 | An endonuclease activity similar to Xenopus PMR1 catalyzes the degradation of normal and nonsense-containing human Â-globin mRNA in erythroid cells. Rna, 2003, 9, 1157-1167.                                                                        | 1.6 | 29        |
| 50 | U2AF modulates poly(A) length control by the poly(A)-limiting element. Nucleic Acids Research, 2003, 31, 6264-6271.                                                                                                                                  | 6.5 | 12        |
| 51 | Â-Globin mRNA decay in erythroid cells: UG site-preferred endonucleolytic cleavage that is augmented<br>by a premature termination codon. Proceedings of the National Academy of Sciences of the United<br>States of America, 2002, 99, 12741-12746. | 3.3 | 53        |
| 52 | Position and sequence requirements for poly(A) length regulation by the poly(A) limiting element. Rna, 2001, 7, 1034-1042.                                                                                                                           | 1.6 | 8         |
| 53 | Polysomal Ribonuclease 1. Methods in Enzymology, 2001, 342, 28-44.                                                                                                                                                                                   | 0.4 | 4         |
| 54 | New Ways of Initiating Translation in Eukaryotes?. Molecular and Cellular Biology, 2001, 21, 8238-8246.                                                                                                                                              | 1.1 | 60        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of in Vivo mRNA Decay Intermediates Corresponding to Sites of in Vitro Cleavage by Polysomal Ribonuclease 1. Journal of Biological Chemistry, 2001, 276, 12331-12337.                                                                     | 1.6 | 22        |
| 56 | Polysomal ribonuclease 1 exists in a latent form on polysomes prior to estrogen activation of mRNA decay. Nucleic Acids Research, 2001, 29, 1156-1162.                                                                                                   | 6.5 | 28        |
| 57 | Vigilin binding selectively inhibits cleavage of the vitellogenin mRNA 3'-untranslated region by the mRNA endonuclease polysomal ribonuclease 1. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12498-12502. | 3.3 | 74        |
| 58 | The poly(A)-limiting element is a conserved cis-acting sequence that regulates poly(A) tail length on<br>nuclear pre-mRNAs. Proceedings of the National Academy of Sciences of the United States of America,<br>1999, 96, 8943-8948.                     | 3.3 | 35        |
| 59 | Characterization of mRNA Endonucleases. Methods, 1999, 17, 60-73.                                                                                                                                                                                        | 1.9 | 22        |
| 60 | A polysomal ribonuclease involved in the destabilization of albumin mRNA is a novel member of the peroxidase gene family. Rna, 1998, 4, 1537-1548.                                                                                                       | 1.6 | 47        |
| 61 | Identification of two cis-acting elements that independently regulate the length of poly(A) on<br>Xenopus albumin pre-mRNA. Rna, 1998, 4, 766-776.                                                                                                       | 1.6 | 24        |
| 62 | Cleavage properties of an estrogen-regulated polysomal ribonuclease involved in the destabilization of albumin mRNA. Nucleic Acids Research, 1997, 25, 735-742.                                                                                          | 6.5 | 35        |
| 63 | The Xenopus laevis homologue of the 64-kDa subunit of cleavage stimulation factor. Comparative<br>Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1996, 114, 313-315.                                                                | 0.7 | 4         |
| 64 | Regulated nuclear polyadenylation of Xenopus albumin pre-mRNA. Nucleic Acids Research, 1996, 24,<br>4078-4083.                                                                                                                                           | 6.5 | 19        |
| 65 | Purification and Characterization of an Estrogen-regulated Xenopus Liver Polysomal Nuclease<br>Involved in the Selective Destabilization of Albumin mRNA. Journal of Biological Chemistry, 1995, 270,<br>6108-6118.                                      | 1.6 | 62        |
| 66 | S-Adenosyl-L-Homocysteine Hydrolase from Xenopus laevis - Identification, Developmental Expression,<br>and Evolution. Biochemical and Biophysical Research Communications, 1994, 205, 1539-1546.                                                         | 1.0 | 3         |
| 67 | Identification and characterization of a cDNA encoding ribosomal protein S12 from Xenopus laevis.<br>Gene, 1994, 150, 331-333.                                                                                                                           | 1.0 | 1         |
| 68 | The Nuclease That Selectively Degrades Albumin mRNA in Vitro Associates with Xenopus Liver<br>Polysomes through the 80S Ribosome Complex. Archives of Biochemistry and Biophysics, 1993, 305,<br>313-319.                                                | 1.4 | 22        |
| 69 | Identification of a novel member of the pentrax in family in Xenopus laevis. Proceedings of the Royal<br>Society B: Biological Sciences, 1993, 253, 263-270.                                                                                             | 1.2 | 54        |
| 70 | Differential regulation and polyadenylation of transferrin mRNA in Xenopus liver and oviduct.<br>Journal of Steroid Biochemistry and Molecular Biology, 1992, 42, 649-657.                                                                               | 1.2 | 12        |
| 71 | Estrogen-induced ribonuclease activity in Xenopus liver. Biochemistry, 1991, 30, 10490-10498.                                                                                                                                                            | 1.2 | 59        |
| 72 | The estrogen-regulated destabilization of Xenopus albumin mRNA is independent of translation.<br>Biochemical and Biophysical Research Communications, 1991, 174, 825-830.                                                                                | 1.0 | 11        |

DANIEL R SCHOENBERG

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Coordinate Estrogen-Regulated Instability of Serum Protein-Coding Messenger RNAs inXenopus laevis.<br>Molecular Endocrinology, 1991, 5, 461-468.                                                                                                              | 3.7 | 47        |
| 74 | Sequence of Xenopus Laevis Ferritin mRNA. Nucleic Acids Research, 1990, 18, 2184-2184.                                                                                                                                                                        | 6.5 | 25        |
| 75 | The nucleotide sequence ofXenopus laevistransferrin mRNA. Nucleic Acids Research, 1990, 18, 6135-6135.                                                                                                                                                        | 6.5 | 36        |
| 76 | Estrogen regulation of Xenopus laevis .gammafibrinogen gene expression. Biochemistry, 1990, 29,<br>2599-2605.                                                                                                                                                 | 1.2 | 24        |
| 77 | XenopuslaevisSerum Albumin: Sequence of the Complementary Deoxyribonucleic Acids Encoding the 68- and 74-Kilodalton Peptides and the Regulation of Albumin Gene Expression by Thyroid Hormone during Development*. Molecular Endocrinology, 1989, 3, 464-473. | 3.7 | 44        |
| 78 | Extranuclear Estrogen-Regulated Destabilization of <i>Xenopus laevis</i> Serum Albumin mRNA.<br>Molecular Endocrinology, 1989, 3, 805-814.                                                                                                                    | 3.7 | 45        |
| 79 | Halocarbon hepatotoxicity is not initiated by Ca2+-stimulated endonuclease activation. Toxicology and Applied Pharmacology, 1989, 97, 350-359.                                                                                                                | 1.3 | 14        |
| 80 | Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene<br>family. Journal of Molecular Evolution, 1989, 29, 344-354.                                                                                            | 0.8 | 55        |
| 81 | Differential Induction of Hepatic Estrogen Receptor and Vitellogenin Gene Transcription in <i>Xenopus laevis</i> *. Endocrinology, 1987, 120, 1283-1290.                                                                                                      | 1.4 | 17        |
| 82 | Posttranscriptional Regulation of Albumin Gene Expression in <i>Xenopus</i> Liver: Evidence for an Estrogen Receptor-Dependent Mechanism*. Molecular Endocrinology, 1987, 1, 160-167.                                                                         | 3.7 | 23        |
| 83 | Effects of antiestrogens on the induction of vitellogenin and its mRNA in Xenopus laevis. The Journal of Steroid Biochemistry, 1986, 24, 1141-1149.                                                                                                           | 1.3 | 10        |
| 84 | Transcriptional and post-transcriptional inhibition of albumin gene expression by estrogen in<br>Xenopus liver. Molecular and Cellular Endocrinology, 1986, 44, 201-209.                                                                                      | 1.6 | 39        |
| 85 | Interference with the screening of genomic libraries by rearrangements of λ1059. Gene Analysis<br>Techniques, 1984, 1, 8-12.                                                                                                                                  | 1.1 | 1         |
| 86 | Nuclear association states of rat uterine oestrogen receptors as probed by nuclease digestion.<br>Biochemical Journal, 1981, 196, 423-432.                                                                                                                    | 3.2 | 19        |
| 87 | Albumin is encoded by 2 messenger RNAs in Xenopus laevis. Nucleic Acids Research, 1981, 9, 6669-6688.                                                                                                                                                         | 6.5 | 14        |
| 88 | A Simple Modification of the Estrogen Receptor Exchange Assay: Validation in Nuclei from the Rat<br>Uterus and a Mouse Mammary Tumor*. Endocrinology, 1980, 106, 56-60.                                                                                       | 1.4 | 6         |