Rodrigo Silveira Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369268/publications.pdf

Version: 2024-02-01

69 papers

3,185 citations

201385 27 h-index 55 g-index

71 all docs

71 docs citations

times ranked

71

4329 citing authors

#	Article	IF	CITATIONS
1	Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption. Journal of Membrane Science, 2007, 301, 126-130.	4.1	290
2	Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374, 108-114.	2.3	260
3	Dynamic and static adsorption and desorption of $Hg(II)$ ions on chitosan membranes and spheres. Water Research, 2006, 40, 1726-1734.	5.3	212
4	Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 196-207.	2.3	192
5	Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X. Adsorption, 2011, 17, 235-246.	1.4	175
6	Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil. Bioresource Technology, 2014, 151, 207-213.	4.8	169
7	Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. Journal of Hazardous Materials, 2008, 152, 1155-1163.	6.5	147
8	CO 2 adsorption in amine-grafted zeolite 13X. Applied Surface Science, 2014, 314, 314-321.	3.1	114
9	Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science, 2004, 240, 227-235.	4.1	113
10	Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chemical Engineering Journal, 2015, 269, 35-43.	6.6	101
11	Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption, 2007, 13, 603-611.	1.4	82
12	Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catalysis Today, 2017, 279, 317-326.	2.2	69
13	Mercury Ion Recovery Using Natural and Crosslinked Chitosan Membranes. Adsorption, 2005, 11, 731-736.	1.4	68
14	Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Applied Clay Science, 2013, 71, 55-63.	2.6	59
15	Formation of complexes between functionalized chitosan membranes and copper: A study by angle resolved XPS. Materials Chemistry and Physics, 2017, 185, 152-161.	2.0	59
16	Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydrate Polymers, 2018, 195, 662-669.	5.1	54
17	Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum Filipendula. Materials Research, 2010, 13, 541-550.	0.6	50
18	Chromium removal on chitosan-based sorbents – An EXAFS/XANES investigation of mechanism. Materials Chemistry and Physics, 2014, 146, 412-417.	2.0	50

#	Article	IF	CITATIONS
19	Blood protein adsorption on sulfonated chitosan and \hat{l}^2 -carrageenan films. Colloids and Surfaces B: Biointerfaces, 2013, 111, 719-725.	2.5	49
20	Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Scientific World Journal, The, 2017, 2017, 1-25.	0.8	46
21	Oxidized bacterial cellulose membrane as support for enzyme immobilization: properties and morphological features. Cellulose, 2020, 27, 3055-3083.	2.4	45
22	Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. Materials Science and Engineering C, 2017, 72, 682-691.	3.8	42
23	In vitro degradability and bioactivity of oxidized bacterial cellulose-hydroxyapatite composites. Carbohydrate Polymers, 2020, 237, 116174.	5.1	39
24	Relevance of the Physicochemical Properties of Calcined Quail Eggshell (CaO) as a Catalyst for Biodiesel Production. Journal of Chemistry, 2017, 2017, 1-12.	0.9	37
25	Synthesis of lactic acid from glycerol using a Pd/C catalyst. Fuel Processing Technology, 2015, 138, 228-235.	3.7	33
26	Adsorption of Copper(II) and Mercury(II) lons onto Chemically-Modified Chitosan Membranes: Equilibrium and Kinetic Properties. Adsorption Science and Technology, 2012, 30, 1-21.	1.5	32
27	Papain immobilized on alginate membrane for wound dressing application. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111222.	2.5	30
28	Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. International Journal of Biological Macromolecules, 2021, 166, 621-632.	3.6	30
29	Cellulose-based electrospun nanofibers: a review. Cellulose, 2022, 29, 25-54.	2.4	29
30	Ethylene adsorption on chitosan/zeolite composite films for packaging applications. Food Packaging and Shelf Life, 2020, 26, 100584.	3.3	28
31	In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. Materials Science and Engineering C, 2016, 59, 241-248.	3.8	27
32	Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Materials Science and Engineering C, 2020, 116, 111175.	3.8	27
33	Glycerol valorization: conversion to lactic acid by heterogeneous catalysis and separation by ion exchange chromatography. Biofuels, Bioproducts and Biorefining, 2020, 14, 357-370.	1.9	25
34	Kinetic and Thermodynamic Study on the Liquid Phase Adsorption by Starchy Materials in the Alcohol-Water System. Adsorption, 2004, 10, 211-218.	1.4	23
35	Antifungal activity of different molecular weight chitosans against planktonic cells and biofilm of Sporothrix brasiliensis. International Journal of Biological Macromolecules, 2020, 143, 341-348.	3.6	23
36	Production of Jet Biofuels by Catalytic Hydroprocessing of Esters and Fatty Acids: A Review. Catalysts, 2022, 12, 237.	1.6	23

#	Article	IF	Citations
37	Glycerol Oligomerization Using Low Cost Dolomite Catalyst. Waste and Biomass Valorization, 2020, 11, 1499-1512.	1.8	22
38	<scp>BSA</scp> and Fibrinogen Adsorption on Chitosan/κâ€ <scp>C</scp> arrageenan Polyelectrolyte Complexes. Macromolecular Bioscience, 2013, 13, 1072-1083.	2.1	21
39	Calcium/chitosan spheres as catalyst for biodiesel production. Polymer International, 2015, 64, 242-249.	1.6	19
40	Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose, 2018, 25, 6661-6679.	2.4	19
41	Stable microfluidized bacterial cellulose suspension. Cellulose, 2019, 26, 5851-5864.	2.4	19
42	Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture. Journal of Materials Science: Materials in Medicine, 2020, 31, 5.	1.7	19
43	Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. International Journal of Biological Macromolecules, 2020, 165, 3065-3077.	3.6	19
44	Natural and Cross-Linked Chitosan Spheres as Adsorbents for Diesel Oil Removal. Adsorption Science and Technology, 2015, 33, 783-792.	1.5	18
45	Effects of histidine modification of chitosan microparticles on metal ion adsorption. Reactive and Functional Polymers, 2020, 154, 104694.	2.0	16
46	Anti-acetylcholinesterase and toxicity against Artemia salina of chitosan microparticles loaded with essential oils of Cymbopogon flexuosus, Pelargonium x ssp and Copaifera officinalis. International Journal of Biological Macromolecules, 2021, 167, 1361-1370.	3.6	16
47	The effects of the molecular weight of chitosan on the tissue inflammatory response. Journal of Biomedical Materials Research - Part A, 2021, 109, 2556-2569.	2.1	16
48	Produção e caracterização de microesferas de quitosana modificadas quimicamente. Polimeros, 2005, 15, 306-312.	0.2	13
49	Temperature Effect on Pretreatment of the Activated Carbon Support (Pt/AC and Pd/AC) for Glycerin into Lactic Acid. Industrial & Engineering Chemistry Research, 2020, 59, 14643-14657.	1.8	13
50	Advances in Bacterial Cellulose/Strontium Apatite Composites for Bone Applications. Polymer Reviews, 2021, 61, 736-764.	5.3	12
51	Production of chemically modified chitosan microspheres by a spraying and coagulation method. Materials Research, 2007, 10, 347-352.	0.6	11
52	Dynamic adsorption of chromium ions onto natural and crosslinked chitosan membranes for wastewater treatment. Materials Research, 2010, 13, 89-94.	0.6	10
53	A potential bio-antioxidant for mineral oil from cashew nutshell liquid: an experimental and theoretical approach. Brazilian Journal of Chemical Engineering, 2020, 37, 369-381.	0.7	10
54	Production and characterization of alginate bilayer membranes for releasing simvastatin to treat wounds. Biointerphases, 2020, 15, 041002.	0.6	8

#	Article	IF	CITATIONS
55	Evaluation of Glass Beads Coated with Chitosan for the Adsorption of Copper(II) lons from Aqueous Solution. Adsorption Science and Technology, 2012, 30, 227-240.	1.5	7
56	Adsorption of Cellulase Isolated from (i) Aspergillus Niger (i) on Chitosan/Alginate Particles Functionalized with Epichlorohydrin. Adsorption Science and Technology, 2013, 31, 17-34.	1.5	7
57	Adsorption of CO ₂ on Amine-Grafted Activated Carbon. Adsorption Science and Technology, 2014, 32, 141-151.	1.5	6
58	Adsorption of copper on glass beads coated with chitosan: Stirred batch and fixed bed analysis. Canadian Journal of Chemical Engineering, 2017, 95, 1164-1170.	0.9	6
59	Benzothiophene adsorption on M/SBAâ€15 and M/SBAâ€15/NH ₄ F modified (M = Fe or Co) phase batch system. Canadian Journal of Chemical Engineering, 2017, 95, 2315-2323.	in liguid	6
60	Development, Validation, and Performance of Chitosanâ€Based Coatings Using Catechol Coupling. Macromolecular Bioscience, 2020, 20, e1900253.	2.1	6
61	Biomimetic Strontium Substituted Calcium Phosphate Coating for Bone Regeneration. Coatings, 2021, 11, 908.	1.2	3
62	Recent Development of Chitosan Nanocomposites with Multiple Potential Uses. Advanced Structured Materials, 2015, , 497-531.	0.3	2
63	AVALIAÇÃO DE CATALISADOR A BASE DE CONCHAS DE OSTRAS PARA A PRODUÇÃO DE BIODIESEL UTILIZANDO PLANEJAMENTO FATORIAL. Holos, 0, 1, 316.	0.0	2
64	Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications. Journal of Coatings Technology Research, 2022, 19, 829-838.	1.2	2
65	Enhancement of the catalytic activity of Mg/Al layered double hydroxide for glycerol oligomers production. Dalton Transactions, 2022, 51, 3213-3224.	1.6	2
66	Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. Brazilian Journal of Chemical Engineering, 2022, 39, 1033-1046.	0.7	2
67	Biopolymer-based coatings for cardiovascular applications. , 2020, , 273-287.		1
68	An EXAFS Study Of The Binding Of Chromium, Mercury And Copper On Natural, Crosslinked And Multilayer Chitosan Films. , 2009, , .		O
69	Avaliação da satisfação de reabilitações com implantes zigomáticos. Universidade Estadual Paulista Revista De Odontologia, 2017, 46, 357-361.	0.3	0