Kei Anne G Baritugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9369122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial cell factories for the production of three-carbon backbone organic acids from agro-industrial wastes. Bioresource Technology, 2022, 349, 126797.	9.6	10
2	Consolidated microbial production of four-, five-, and six-carbon organic acids from crop residues: Current status and perspectives. Bioresource Technology, 2022, 351, 127001.	9.6	11
3	Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean Journal of Chemical Engineering, 2021, 38, 1291-1307.	2.7	6
4	Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. Korean Journal of Chemical Engineering, 2021, 38, 1452-1459.	2.7	15
5	Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: A review. Bioresource Technology, 2021, 340, 125693.	9.6	50
6	Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered <i>Corynebacterium glutamicum</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 2523-2533.	6.7	21
7	Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic Engineering, 2020, 58, 47-81.	7.0	138
8	Development of Metabolically Engineered <i>Corynebacterium glutamicum</i> for Enhanced Production of Cadaverine and Its Use for the Synthesis of Bio-Polyamide 510. ACS Sustainable Chemistry and Engineering, 2020, 8, 129-138.	6.7	23
9	Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. Biotechnology and Bioprocess Engineering, 2020, 25, 848-861.	2.6	21
10	Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnology Journal, 2020, 15, e1900489.	3.5	92
11	Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. International Journal of Biological Macromolecules, 2020, 149, 593-599.	7.5	30
12	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	7.0	50
13	High-Level Conversion of l-lysine into Cadaverine by Escherichia coli Whole Cell Biocatalyst Expressing Hafnia alvei l-lysine Decarboxylase. Polymers, 2019, 11, 1184.	4.5	21
14	Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. Biotechnology and Bioprocess Engineering, 2019, 24, 48-64.	2.6	34
15	Metabolic Engineering of <i>Corynebacterium glutamicum</i> for the High-Level Production of Cadaverine That Can Be Used for the Synthesis of Biopolyamide 510. ACS Sustainable Chemistry and Engineering, 2018, 6, 5296-5305.	6.7	83
16	Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Applied Microbiology and Biotechnology, 2018, 102, 3915-3937.	3.6	60
17	Construction of a Vitreoscilla Hemoglobin Promoter-Based Tunable Expression System for Corynebacterium glutamicum. Catalysts, 2018, 8, 561.	3.5	10
18	Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microbial Cell Factories, 2018, 17, 129.	4.0	42

#	Article	IF	CITATIONS
19	Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals. Biotechnology and Bioprocess Engineering, 2017, 22, 178-185.	2.6	26
20	Bio-solubilization of the untreated low rank coal by alkali-producing bacteria isolated from soil. Korean Journal of Chemical Engineering, 2017, 34, 105-109.	2.7	9
21	Advances in the biological treatment of coal for synthetic natural gas and chemicals. Korean Journal of Chemical Engineering, 2016, 33, 2788-2801.	2.7	23