Wolfram H P Pernice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368994/publications.pdf

Version: 2024-02-01

206 papers 12,974 citations

34105

h-index

24258

110

g-index

216 all docs

216 docs citations

216 times ranked

9046 citing authors

#	Article	IF	CITATIONS
1	2022 roadmap on neuromorphic computing and engineering. Neuromorphic Computing and Engineering, 2022, 2, 022501.	5.9	217
2	Single-Photon Emission from Individual Nanophotonic-Integrated Colloidal Quantum Dots. ACS Photonics, 2022, 9, 551-558.	6.6	18
3	Special topic on non-classical light emitters and single-photon detectors. Applied Physics Letters, 2022, 120, 010401.	3.3	O
4	Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics, 2022, 11, 4063-4072.	6.0	28
5	Multi-channel waveguide-integrated superconducting nanowire single-photon detector system for ultrafast quantum key distribution., 2022,,.		O
6	Spontaneous parametric downconversion in linearly uncoupled resonators. Optics Letters, 2022, 47, 1766.	3.3	0
7	Artificial Biphasic Synapses Based on Nonvolatile Phaseâ€Change Photonic Memory Cells. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	11
8	Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials. Advanced Science, 2022, 9, e2200383.	11.2	29
9	Antimony as a Programmable Element in Integrated Nanophotonics. Nano Letters, 2022, 22, 3532-3538.	9.1	19
10	High-Index Organic Polymeric Carbon Nitride-Based Photonic Devices for Telecommunication Wavelengths. ACS Photonics, 2022, 9, 1717-1723.	6.6	2
11	Interlaboratory study on Sb2S3 interplay between structure, dielectric function, and amorphous-to-crystalline phase change for photonics. IScience, 2022, 25, 104377.	4.1	29
12	Giant nonlinear self-phase modulation of large-amplitude spin waves in microscopic YIG waveguides. Scientific Reports, 2022, 12, 7246.	3.3	8
13	Monadic Pavlovian associative learning in a backpropagation-free photonic network. Optica, 2022, 9, 792.	9.3	13
14	An integrated photonics engine for unsupervised correlation detection. Science Advances, 2022, 8, .	10.3	8
15	Integrated quantum photonic circuits made from diamond. Semiconductors and Semimetals, 2021, 104, 149-171.	0.7	1
16	Telecom Wavelength Carbon Nanotube Emitter Integrated in Hybrid Photonic Crystal Cavity., 2021,,.		0
17	Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589, 52-58.	27.8	72 3
18	System-Level Simulation for Integrated Phase-Change Photonics. Journal of Lightwave Technology, 2021, 39, 6392-6402.	4.6	6

#	Article	IF	CITATIONS
19	Detector-integrated on-chip QKD receiver for GHz clock rates. Npj Quantum Information, 2021, 7, .	6.7	29
20	A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices. Journal of Applied Physics, 2021, 129, .	2.5	20
21	Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency. Applied Physics Letters, $2021,118,.$	3.3	20
22	Chalcogenide phase-change devices for neuromorphic photonic computing. Journal of Applied Physics, 2021, 129, .	2.5	35
23	Efficient self-imaging grating couplers on a lithium-niobate-on-insulator platform at near-visible and telecom wavelengths. Optics Express, 2021, 29, 20205.	3.4	21
24	Single organic molecules for photonic quantum technologies. Nature Materials, 2021, 20, 1615-1628.	27.5	79
25	The rise of intelligent matter. Nature, 2021, 594, 345-355.	27.8	228
26	Coupling a Single Molecule to an Interrupted Nanophotonic Waveguide. , 2021, , .		0
27	Plasmonics: Enabling functionalities with novel materials. Journal of Applied Physics, 2021, 129, .	2.5	11
28	Integration of colloidal quantum dots with nanophotonic circuits., 2021,,.		0
29	Hybrid Quantum Photonics Based on Artificial Atoms Placed Inside One Hole of a Photonic Crystal Cavity. ACS Photonics, 2021, 8, 2635-2641.	6.6	18
30	Photonics for artificial intelligence and neuromorphic computing. Nature Photonics, 2021, 15, 102-114.	31.4	764
31	Reconfigurable nanophotonic circuitry enabled by direct-laser-writing. , 2021, , .		0
32	Coherent characterisation of a single molecule in a photonic black box. Nature Communications, 2021, 12, 706.	12.8	18
33	Optoelectromechanical phase shifter with low insertion loss and a 13Ï€ tuning range. Optics Express, 2021, 29, 5525.	3.4	27
34	Multi-channel quantum communication receiver made from waveguide-integrated superconducting nanowire single-photon detectors., 2021,,.		0
35	Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nature Communications, 2021, 12, 6847.	12.8	55
36	Waveguide-integrated single-photon detectors with high system detection efficiency and photon number resolution. , 2021, , .		0

#	Article	IF	Citations
37	Integrated 256 Cell Photonic Phase-Change Memory With 512-Bit Capacity. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-7.	2.9	54
38	Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder. Nano Letters, 2020, 20, 2625-2631.	9.1	30
39	Reconfigurable Nanophotonic Circuitry Enabled by Direct-Laser-Writing. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-5.	2.9	8
40	Waveguideâ€Integrated Broadband Spectrometer Based on Tailored Disorder. Advanced Optical Materials, 2020, 8, 1901602.	7.3	46
41	Hybrid integrated quantum photonic circuits. Nature Photonics, 2020, 14, 285-298.	31.4	411
42	Waveguide-Integrated Superconducting Nanowire SinglePhoton Detector Array for Ultra-Fast Quantum Key Distribution., 2020,,.		2
43	Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics. Optics Express, 2020, 28, 19593.	3.4	5
44	Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Optical Materials Express, 2020, 10, 1778.	3.0	16
45	Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing. Optica, 2020, 7, 218.	9.3	58
46	Purcell-enhanced emission from individual SiV ^{â^²} center in nanodiamonds coupled to a Si ₃ N ₄ -based, photonic crystal cavity. Nanophotonics, 2020, 9, 3655-3662.	6.0	21
47	On-chip Phase Change Optical Matrix Multiplication Core. , 2020, , .		9
48	Broadband fiber-to-chip coupling in different wavelength regimes realized by 3D-structures. , 2020, , .		2
49	Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands. Optical Materials Express, 2020, 10, 1778.	3.0	2
50	Integrated phase-change photonic devices and systems. MRS Bulletin, 2019, 44, 721-727.	3.5	29
51	Investigation on Metal–Oxide Graphene Field-Effect Transistors With Clamped Geometries. IEEE Journal of the Electron Devices Society, 2019, 7, 964-968.	2.1	1
52	Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate. Applied Physics Letters, 2019, 115, .	3.3	7
53	Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications. APL Materials, 2019, 7, .	5.1	17
54	Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics, 2019, 4, .	5.7	58

#	Article	IF	CITATIONS
55	Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study. ACS Omega, 2019, 4, 2256-2260.	3 . 5	18
56	Tunable Volatility of Ge ₂ Sb ₂ Te ₅ in Integrated Photonics. Advanced Functional Materials, 2019, 29, 1807571.	14.9	57
57	Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si ₃ N ₄ Photonic Crystal Cavity. ACS Nano, 2019, 13, 6891-6898.	14.6	29
58	All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569, 208-214.	27.8	847
59	Protocol of Measuring Hot-Spot Correlation Length for SNSPDs With Near-Unity Detection Efficiency. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	4
60	Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material. ACS Photonics, 2019, 6, 1182-1190.	6.6	8
61	In-memory computing on a photonic platform. Science Advances, 2019, 5, eaau5759.	10.3	238
62	Python based open source design framework for integrated nanophotonic and superconducting circuitry with 2D-3D-hybrid integration. OSA Continuum, 2019, 2, 3091.	1.8	11
63	Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer. ACS Photonics, 2019, 6, 3120-3125.	6.6	9
64	Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Science Advances, 2019, 5, eaaw2687.	10.3	131
65	Plasmonically-enhanced all-optical integrated phase-change memory. Optics Express, 2019, 27, 24724.	3.4	35
66	Broadband out-of-plane coupling at visible wavelengths. Optics Letters, 2019, 44, 5089.	3. 3	51
67	Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography. Optical Materials Express, 2019, 9, 3109.	3.0	10
68	Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell. Optica, 2019, 6, 1.	9.3	195
69	Integrated Phase-change Photonics: A Strategy for Merging Communication and Computing. , 2019, , .		1
70	All-photonic in-memory computing based on phase-change materials. , 2019, , .		0
71	10.1063/1.5111840.1., 2019, , .		0
72	Coupling Thermal Atomic Vapor to Slot Waveguides. Physical Review X, 2018, 8, .	8.9	32

#	Article	IF	CITATIONS
73	Photostable Molecules on Chip: Integrated Sources of Nonclassical Light. ACS Photonics, 2018, 5, 126-132.	6.6	51
74	Cavity-Enhanced Superconducting Single Photon Detectors. , 2018, , .		0
75	Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics, 2018, 7, 1725-1758.	6.0	103
76	Chapter 13 Waveguide Integrated Superconducting Single Photon Detectors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 255-265.	0.3	0
77	Diamond as a Platform for Integrated Quantum Photonics. Advanced Quantum Technologies, 2018, 1, 1800061.	3.9	49
78	Superconducting single-photon detector for integrated waveguide spectrometer. EPJ Web of Conferences, 2018, 190, 04009.	0.3	1
79	Reconfigurable Nanophotonic Cavities with Nonvolatile Response. ACS Photonics, 2018, 5, 4644-4649.	6.6	32
80	Deviceâ€Level Photonic Memories and Logic Applications Using Phaseâ€Change Materials. Advanced Materials, 2018, 30, e1802435.	21.0	129
81	Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity. Optica, 2018, 5, 658.	9.3	58
82	Design study of random spectrometers for applications at optical frequencies. Optics Letters, 2018, 43, 3180.	3.3	13
83	Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]. Optical Materials Express, 2018, 8, 2455.	3.0	113
84	Carbon nanotubes as emerging quantum-light sources. Nature Materials, 2018, 17, 663-670.	27.5	210
85	Highly Compact and Scalable Waveguide-Integrated Single Photon Spectrometer Based on Tailored Disorder. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 405-405.	0.3	0
86	Superconducting Nanowire Single Photon Detector for Coherent Detection of Weak Signals. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	3
87	Circuit Optomechanics with Diamond Integrated Optical Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 213-221.	0.3	0
88	Beaming light from a quantum emitter with a planar optical antenna. Light: Science and Applications, 2017, 6, e16245-e16245.	16.6	41
89	Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits. Nano Letters, 2017, 17, 150-155.	9.1	148
90	Calculating with light using a chip-scale all-optical abacus. Nature Communications, 2017, 8, 1256.	12.8	201

#	Article	IF	Citations
91	On-chip photonic synapse. Science Advances, 2017, 3, e1700160.	10.3	399
92	All-optical signal processing using phase-change nanophotonics. , 2017, , .		3
93	On-chip coherent detection with quantum limited sensitivity. Scientific Reports, 2017, 7, 4812.	3.3	14
94	On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source. Nano Letters, 2017, 17, 5446-5451.	9.1	72
95	Nonvolatile Allâ€Optical 1 × 2 Switch for Chipscale Photonic Networks. Advanced Optical Materials, 2017, 5, 1600346.	7.3	165
96	Integrated Quantum Photonic Circuits with Electrically Driven Light Sources., 2017,,.		0
97	Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits. , 2017, , .		0
98	Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Optics Express, 2017, 25, 8739.	3 . 4	15
99	Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. Optica, 2017, 4, 557.	9.3	39
100	Photostable molecules on chip: Integrated single photon sources for quantum technologies. , 2017, , .		0
101	Coupling thermal atomic vapor to an integrated ring resonator. New Journal of Physics, 2016, 18, 103031.	2.9	29
102	Diamond on aluminum nitride as a platform for integrated photonic circuits. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2075-2080.	1.8	7
103	Sub-Poisson-binomial light. Physical Review A, 2016, 94, .	2.5	11
104	Cascaded Mach–Zehnder interferometer tunable filters. Journal of Optics (United Kingdom), 2016, 18, 064011.	2.2	30
105	Cavity-enhanced light emission from electrically driven carbon nanotubes. Nature Photonics, 2016, 10, 420-427.	31.4	119
106	Thermo-optical Effect in Phase-Change Nanophotonics. ACS Photonics, 2016, 3, 828-835.	6.6	81
107	Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows. Nano Letters, 2016, 16, 3341-3347.	9.1	43
108	Fully integrated quantum photonic circuit with an electrically driven light source. Nature Photonics, 2016, 10, 727-732.	31.4	190

#	Article	IF	Citations
109	Waveguide integrated superconducting single-photon detectors. , 2016, , .		O
110	Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors. Nano Letters, 2016, 16, 7085-7092.	9.1	77
111	Nichtflýchtiger optischer Speicher in photonischen Schaltkreisen. Physik in Unserer Zeit, 2016, 47, 9-10.	0.0	0
112	Waveguide Integrated Superconducting Nanowire Single Photon Detectors on Silicon. Quantum Science and Technology, 2016, , 85-105.	2.6	0
113	Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps. , $2016, , .$		3
114	High Efficiency On-Chip Single-Photon Detection for Diamond Nanophotonic Circuits. Journal of Lightwave Technology, 2016, 34, 249-255.	4.6	16
115	Atomic vapor spectroscopy in integrated photonic structures. Applied Physics Letters, 2015, 107, .	3.3	48
116	Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2385-2399.	1.8	47
117	All-photonic nonvolatile memory cells using phase-change materials. , 2015, , .		0
118	Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Scientific Reports, 2015, 5, 10941.	3.3	84
119	Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Applied Physics Letters, 2015, 106, .	3.3	37
120	Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 2015, 9, 725-732.	31.4	833
121	Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Science and Applications, 2015, 4, e338-e338.	16.6	60
122	Direct laser writing aligned with nano-diamonds containing NV-centers as single-photon emitters. , 2015, , .		0
123	Diamond Nanophotonic Circuits Functionalized by Dipâ€pen Nanolithography. Advanced Optical Materials, 2015, 3, 328-335.	7.3	20
124	Integrated Photonic Circuits in Gallium Nitride and Aluminum Nitride. International Journal of High Speed Electronics and Systems, 2014, 23, 1450001.	0.7	5
125	Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Applied Physics Letters, 2014, 105, .	3.3	19
126	Integrated Optomechanical Circuits and Nonlinear Dynamics. , 2014, , 169-194.		0

#	Article	IF	Citations
127	Carbon integrated optomechanical systems. , 2014, , .		O
128	Onâ€Chip Photonic Memory Elements Employing Phaseâ€Change Materials. Advanced Materials, 2014, 26, 1372-1377.	21.0	189
129	Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Applied Physics Letters, 2014, 104, 091108.	3.3	39
130	Waveguideâ€Integrated Lightâ€Emitting Carbon Nanotubes. Advanced Materials, 2014, 26, 3465-3472.	21.0	56
131	Circuit optomechanics: concepts and materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1889-1898.	3.0	3
132	Design of a Silicon Integrated Electro-Optic Modulator Using Ferroelectric BaTiO ₃ Films. IEEE Photonics Technology Letters, 2014, 26, 1344-1347.	2.5	25
133	Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO ₃ Devices. Nano Letters, 2014, 14, 1419-1425.	9.1	208
134	Hybrid 2D–3D optical devices for integrated optics by direct laser writing. Light: Science and Applications, 2014, 3, e175-e175.	16.6	134
135	Nanometric surface probing through ultra-cold atoms. Proceedings of SPIE, 2014, , .	0.8	0
136	Selective excitation of guided modes in integrated aluminum nitride photonic circuits., 2014,,.		0
137	A silicon nanowire factorable photon pair source. Optical and Quantum Electronics, 2013, 45, 357-364.	3.3	0
138	Matrix of Integrated Superconducting Single-Photon Detectors With High Timing Resolution. IEEE Transactions on Applied Superconductivity, 2013, 23, 2201007-2201007.	1.7	15
139	Low-noise NbTiN superconducting nanowire single-photon detectors integrated with Si3N4 waveguides. , 2013, , .		0
140	NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Applied Physics Letters, 2013, 102, .	3.3	74
141	Diamond-integrated optomechanical circuits. Nature Communications, 2013, 4, 1690.	12.8	75
142	Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors. Applied Physics Letters, 2013, 102, .	3.3	31
143	Broadband directional coupling in aluminum nitride nanophotonic circuits. Optics Express, 2013, 21, 7304.	3.4	18
144	Waferscale nanophotonic circuits made from diamond-on-insulator substrates. Optics Express, 2013, 21, 11031.	3.4	33

#	Article	IF	Citations
145	Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits. Optics Express, 2013, 21, 22683.	3.4	27
146	Mode control and mode conversion in nonlinear aluminum nitride waveguides. Optics Express, 2013, 21, 26742.	3.4	7
147	High-quality Si_3N_4 circuits as a platform for graphene-based nanophotonic devices. Optics Express, 2013, 21, 31678.	3.4	45
148	Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits. Journal of Nanophotonics, 2013, 7, 073095.	1.0	3
149	Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films. Beilstein Journal of Nanotechnology, 2013, 4, 300-305.	2.8	21
150	Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate. Scientific Reports, 2013, 3, 1893.	3.3	116
151	Integrated Photonic Circuits on Wafer-Scale Diamond-on-Insulator Substrates. , 2013, , .		0
152	Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison. Optics Express, 2012, 20, 26486.	3.4	16
153	Photonic non-volatile memories using phase change materials. Applied Physics Letters, 2012, 101, .	3.3	139
154	High-Q aluminum nitride photonic crystal nanobeam cavities. Applied Physics Letters, 2012, 100, .	3.3	71
155	Frequency and phase noise of ultrahigh <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> silicon nitride nanomechanical resonators. Physical Review B. 2012. 85	3.2	50
156	Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New Journal of Physics, 2012, 14, 095014.	2.9	207
157	Phase noise of high Q silicon nitride nanomechanical resonators. , 2012, , .		0
158	Backaction limits on self-sustained optomechanical oscillations. Physical Review A, 2012, 86, .	2.5	34
159	Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing. Nano Letters, 2012, 12, 3562-3568.	9.1	212
160	Observation of k <inf>B</inf> T/f frequency noise in ultrahigh Q silicon nitride nanomechanical resonators. , 2012, , .		0
161	High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nature Communications, 2012, 3, 1325.	12.8	366
162	High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics. Optics Express, 2012, 20, 12261.	3.4	60

#	Article	IF	Citations
163	Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Applied Physics Letters, 2012, 100, .	3.3	116
164	GHz Optomechanical Wheel and Disk Resonators with High Mechanical Q Factors in Air. , 2012, , .		0
165	Second harmonic generation in aluminum nitride waveguides on silicon substrates. , 2012, , .		1
166	Nonlinear Photonic Circuits on Hybrid Silicon Substrates. , 2012, , .		0
167	Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures. Optics Express, 2011, 19, 3290.	3.4	21
168	Integrated GaN photonic circuits on silicon (100) for second harmonic generation. Optics Express, 2011, 19, 10462.	3.4	176
169	Tunable optical coupler controlled by optical gradient forces. Optics Express, 2011, 19, 15098.	3.4	45
170	GHz optomechanical resonators with high mechanical Q factor in air. Optics Express, 2011, 19, 22316.	3.4	41
171	Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotechnology, 2011, 6, 726-732.	31.5	216
172	A silicon nano-wire factorable photon pair source. , 2011, , .		0
173	High Q optomechanical resonators in silicon nitride nanophotonic circuits. , 2011, , .		0
174	Nano-optomechanical System. , 2011, , .		0
175	A threeâ€dimensional mesh refinement algorithm with low boundary reflections for the finiteâ€difference timeâ€domain simulation of metallic structures. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2010, 23, 183-199.	1.9	0
176	Finite-Difference Time-Domain Methods and Material Models for the Simulation of Metallic and Plasmonic Structures. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1-14.	0.4	106
177	Photonic Integration of nano-electro-mechanical systems. , 2010, , .		0
178	Adiabatic embedment of nanomechanical resonators in photonic microring cavities. Applied Physics Letters, 2010, 96, 263101.	3.3	7
179	High Q optomechanical resonators in silicon nitride nanophotonic circuits. Applied Physics Letters, 2010, 97, .	3.3	47
180	Optical forces between a high-Q micro-disk resonator and an integrated waveguide. , 2010, , .		0

#	Article	IF	Citations
181	Analysis of short range forces in opto-mechanical devices with a nanogap. Optics Express, 2010, 18, 12615.	3.4	21
182	Time-domain measurement of optical transport in silicon micro-ring resonators. Optics Express, 2010, 18, 18438.	3.4	50
183	High performance nanophotonic circuits based on partially buried horizontal slot waveguides. Optics Express, 2010, 18, 20690.	3.4	20
184	Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities. Applied Physics Letters, 2010, 97, 183110.	3.3	52
185	Adiabatic embedment of nanomechanical resonators in photonic microring cavities. , 2010, , .		0
186	Tunable optical forces and mode beating in coupled nano-mechanical beam waveguides. , 2010, , .		0
187	Photothermal actuation in nanomechanical waveguide devices. Journal of Applied Physics, 2009, 105, 014508.	2.5	7
188	Silicon nitride membrane photonics. Journal of Optics, 2009, 11, 114017.	1.5	11
189	Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4, 377-382.	31.5	117
190	Tunable bipolar optical interactions between guided lightwaves. Nature Photonics, 2009, 3, 464-468.	31.4	232
191	Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Optics Express, 2009, 17, 1806.	3.4	66
192	Optomechanical coupling in photonic crystal supported nanomechanical waveguides. Optics Express, 2009, 17, 12424.	3.4	28
193	Modeling of the optical force between propagating lightwaves in parallel 3D waveguides. Optics Express, 2009, 17, 16032.	3.4	26
194	Reactive Cavity Optical Force on Microdisk-Coupled Nanomechanical Beam Waveguides. Physical Review Letters, 2009, 103, 223901.	7.8	164
195	A mechanical Kerr effect in deformable photonic media. Applied Physics Letters, 2009, 95, .	3.3	25
196	Pseudo-spectral time-domain simulation of the transmission and the group delay of photonic devices. Optical and Quantum Electronics, 2008, 40, 1-12.	3.3	7
197	Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456, 480-484.	27.8	492
198	Numerical investigation of Littrow lasing in open resonator photonic crystal waveguides. Europhysics Letters, 2008, 82, 54001.	2.0	1

#	Article	IF	CITATIONS
199	Gigahertz photothermal effect in silicon waveguides. Applied Physics Letters, 2008, 93, 213106.	3.3	4
200	An Efficient Alternating Direction Implicit-Based Fourier Spectral Method for the Simulation of Dispersive Metallic Structures. Journal of Computational and Theoretical Nanoscience, 2008, 5, 571-580.	0.4	0
201	Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm. Optics Express, 2007, 15, 11433.	3.4	8
202	A Finite-Difference Time-Domain Method for the Simulation of Gain Materials With Carrier Diffusion in Photonic Crystals. Journal of Lightwave Technology, 2007, 25, 2306-2314.	4.6	15
203	A General Framework for the Finite-Difference Time-Domain Simulation of Real Metals. IEEE Transactions on Antennas and Propagation, 2007, 55, 916-923.	5.1	18
204	Diamond components with integrated abrasion sensor for tribological applications. Diamond and Related Materials, 2007, 16, 991-995.	3.9	1
205	Finite-difference time-domain simulation of dispersive features smaller than the grid spacing. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2007, 20, 311-326.	1.9	3
206	An FDTD method for the simulation of dispersive metallic structures. Optical and Quantum Electronics, 2007, 38, 843-856.	3.3	28