RafaÅ, KonefaÅ,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368552/publications.pdf

Version: 2024-02-01

414414 361413 1,269 63 20 32 citations h-index g-index papers 63 63 63 2190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure and Dynamics of Alginate Gels Cross-Linked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules, 2017, 18, 2478-2488.	5.4	115
2	Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7238-7247.	8.0	114
3	Poly(<i>N</i> i>-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation. Soft Matter, 2015, 11, 9291-9306.	2.7	58
4	Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale, 2016, 8, 6958-6963.	5 . 6	54
5	Self-Assembled Thermoresponsive Polymeric Nanogels for ¹⁹ F MR Imaging. Biomacromolecules, 2018, 19, 3515-3524.	5 . 4	49
6	Unraveling and Mitigating the Storage Instability of Fluoroethylene Carbonate-Containing LiPF ₆ Electrolytes To Stabilize Lithium Metal Anodes for High-Temperature Rechargeable Batteries. ACS Applied Energy Materials, 2019, 2, 4925-4935.	5.1	49
7	Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2017, 9, 10544-10553.	8.0	47
8	Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best?. Langmuir, 2016, 32, 6115-6122.	3. 5	40
9	System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 307-315.	3.3	38
10	Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. Journal of Nanobiotechnology, 2018, 16, 73.	9.1	32
11	Glycan-decorated HPMA copolymers as high-affinity lectin ligands. Polymer Chemistry, 2017, 8, 2647-2658.	3.9	30
12	Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules, 2019, 20, 1798-1815.	5 . 4	30
13	Novel poly(ethylene oxide monomethyl ether)-b-poly(ε-caprolactone) diblock copolymers containing a pH-acid labile ketal group as a block linkage. Polymer Chemistry, 2014, 5, 3884-3893.	3.9	29
14	Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules, 2020, 21, 1437-1449.	5.4	29
15	One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polymer Chemistry, 2017, 8, 1999-2004.	3.9	27
16	Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. Journal of Controlled Release, 2018, 269, 214-224.	9.9	27
17	High-Affinity <i>N</i> -(2-Hydroxypropyl)methacrylamide Copolymers with Tailored <i>N</i> -Acetyllactosamine Presentation Discriminate between Galectins. Biomacromolecules, 2020, 21, 641-652.	5.4	24
18	Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1073-1088.	2.8	23

#	Article	IF	CITATIONS
19	<i>N</i> -(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules, 2018, 19, 4003-4013.	5.4	22
20	Persulfate initiated free-radical polymerization of itaconic acid: Kinetics, end-groups and side products. European Polymer Journal, 2018, 106, 63-71.	5 . 4	22
21	Insight into the cryopolymerization to form a poly(N-isopropylacrylamide)/clay macroporous gel: structure and phase evolution. Soft Matter, 2017, 13, 1244-1256.	2.7	19
22	Microfluidic-Assisted Engineering of Quasi-Monodisperse pH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir, 2019, 35, 8363-8372.	3.5	18
23	lonic Liquid-Silica Precursors via Solvent-Free Sol–Gel Process and Their Application in Epoxy-Amine Network: A Theoretical/Experimental Study. ACS Applied Materials & Diterfaces, 2017, 9, 16474-16487.	8.0	17
24	Thermoresponsive behavior of block copolymers of PEO and PNIPAm with different architecture in aqueous solutions: A study by NMR, FTIR, DSC and quantum-chemical calculations. European Polymer Journal, 2017, 94, 471-483.	5.4	16
25	Thermoresponsive poly(2-oxazoline) homopolymers and copolymers in aqueous solutions studied by NMR spectroscopy and dynamic light scattering. European Polymer Journal, 2018, 100, 241-252.	5.4	16
26	Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid and Polymer Science, 2014, 292, 2097-2110.	2.1	15
27	Synthesis and Solution Properties of PCL-b-PHPMA Diblock Copolymers Containing Stable Nitroxyl Radicals. Macromolecules, 2016, 49, 5407-5417.	4.8	15
28	Biocompatible succinic acid-based polyesters for potential biomedical applications: fungal biofilm inhibition and mesenchymal stem cell growth. RSC Advances, 2015, 5, 85756-85766.	3.6	14
29	NMR Study of Thermoresponsive Block Copolymer in Aqueous Solution. Macromolecular Chemistry and Physics, 2016, 217, 1370-1375.	2.2	14
30	Hybrid thermoresponsive graft constructs of fungal polysaccharide \hat{l}^2 -glucan: Physico-chemical and immunomodulatory properties. European Polymer Journal, 2018, 106, 118-127.	5.4	14
31	Highâ€Molecularâ€Weight Polyampholytes Synthesized via Daylightâ€Induced, Initiatorâ€Free Radical Polymerization of Renewable Itaconic Acid. Macromolecular Rapid Communications, 2020, 41, e1900611.	3.9	14
32	Additive Effects on Phase Transition and Interactions in Poly(vinyl methyl ether) Solutions. Polymers, 2015, 7, 2572-2583.	4.5	13
33	Structural changes on polymeric nanoparticles induced by hydrophobic drug entrapment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 238-249.	4.7	13
34	Graft copolymers with tunable amphiphilicity tailored for efficient dual drug delivery <i>via</i> encapsulation and pH-sensitive drug conjugation. Polymer Chemistry, 2020, 11, 4438-4453.	3.9	13
35	Thermoresponsive behaviour of terpolymers containing poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone) blocks in aqueous solutions: an NMR study. Colloid and Polymer Science, 2016, 294, 1717-1726.	2.1	12
36	Hybrid κ-carrageenan-based polymers showing "schizophrenic―lower and upper critical solution temperatures and potassium responsiveness. Carbohydrate Polymers, 2019, 210, 26-37.	10.2	12

#	Article	IF	CITATIONS
37	Effect of PAMAM Dendrimers on Interactions and Transport of LiTFSI and NaTFSI in Propylene Carbonate-Based Electrolytes. Polymers, 2020, 12, 1595.	4.5	12
38	Carbon nanospecies affecting amyloid formation. RSC Advances, 2017, 7, 53887-53898.	3.6	11
39	Poly(ethylene oxide monomethyl ether)- <i>block</i> -poly(propylene succinate) Nanoparticles: Synthesis and Characterization, Enzymatic and Cellular Degradation, Micellar Solubilization of Paclitaxel, and in Vitro and in Vivo Evaluation. Biomacromolecules, 2018, 19, 2443-2458.	5.4	11
40	In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids and Surfaces B: Biointerfaces, 2019, 179, 143-152.	5.0	11
41	Modified glycogen as construction material for functional biomimetic microfibers. Carbohydrate Polymers, 2016, 152, 271-279.	10.2	10
42	Glycopolymers Decorated with 3- <i>O</i> -Substituted Thiodigalactosides as Potent Multivalent Inhibitors of Galectin-3. Journal of Medicinal Chemistry, 2022, 65, 3866-3878.	6.4	10
43	Thermoresponsive behavior of poly(DEGMA)-based copolymers. NMR and dynamic light scattering study of aqueous solutions. European Polymer Journal, 2020, 124, 109488.	5.4	9
44	Temperature Behavior of Aqueous Solutions of Poly(2-Oxazoline) Homopolymer and Block Copolymers Investigated by NMR Spectroscopy and Dynamic Light Scattering. Polymers, 2020, 12, 1879.	4.5	9
45	Enhanced Antitumor Efficacy through an "AND gate―Reactive Oxygenâ€5peciesâ€Dependent pHâ€Responsi Nanomedicine Approach. Advanced Healthcare Materials, 2021, 10, e2100304.	ve 7.6	9
46	Insight into the aqueous Laponite \hat{A}^{\otimes} nanodispersions for self-assembled poly(itaconic acid) nanocomposite hydrogels: The effect of multivalent phosphate dispersants. Journal of Colloid and Interface Science, 2022, 610, 1-12.	9.4	8
47	Unexpected irregular structures of poly(itaconic acid) prepared in Deep Eutectic Solvents. European Polymer Journal, 2019, 115, 30-36.	5.4	7
48	Đ¡olloidal probe based on iron(III)-doped calcium phytate nanoparticles for 31P NMR monitoring of bacterial siderophores. Colloids and Interface Science Communications, 2021, 42, 100427.	4.1	6
49	Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for ¹⁹ F Imaging. Biomacromolecules, 2021, 22, 2963-2975.	5.4	6
50	Self-Catalyzed Coupling between BrĄ̃nsted-Acidic Imidazolium Salts and Epoxy-Based Materials: A Theoretical/Experimental Study. ACS Sustainable Chemistry and Engineering, 2019, 7, 19050-19061.	6.7	5
51	Obtaining of silver nanopowders by the thermal decomposition of fatty silver salts with various chain length. Materials Research Express, 2019, 6, 065046.	1.6	5
52	γâ∈Butyrolactone Copolymerization with the Wellâ∈Documented Polymer Drug Carrier Poly(ethylene) Tj ETQq0 C 2020, 20, 1900408.	0 rgBT /C 4.1	Overlock 10
53	Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)- <i>b</i> cip-cip-cip-cip-cip-cip-cip-cip-cip-cip-	3.9	5
54	Development of an Acid-Labile Ketal Linked Amphiphilic Block Copolymer Nanoparticles for pH-Triggered Release of Paclitaxel. Polymers, 2021, 13, 1465.	4.5	5

#	Article	IF	Citations
55	Microwave-assisted RAFT polymerization of N-(2-hydroxypropyl) methacrylamide and its relevant copolymers. Reactive and Functional Polymers, 2021, 162, 104875.	4.1	5
56	Phosphorus ontaining Polymeric Zwitterion: A Pioneering Bioresponsive Probe for ³¹ Pâ€Magnetic Resonance Imaging. Macromolecular Bioscience, 2022, 22, e2100523.	4.1	5
57	Antioxidant polymer-modified maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 517-526.	2.3	4
58	HPMA-Based Copolymers Carrying STAT3 Inhibitor Cucurbitacin-D as Stimulus-Sensitive Nanomedicines for Oncotherapy. Pharmaceutics, 2021, 13, 179.	4.5	4
59	Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. Journal of Materials Chemistry B, 2020, 8, 9980-9996.	5.8	3
60	The Influence of Nanofiller Shape and Nature on the Functional Properties of Waterborne Poly(urethane-urea) Nanocomposite Films. Polymers, 2020, 12, 2001.	4.5	3
61	Copolymer chain formation of 2-oxazolines by <i>in situ</i> ¹ H-NMR spectroscopy: dependence of sequential composition on substituent structure and monomer ratios. RSC Advances, 2021, 11, 10468-10478.	3.6	3
62	Reconstructing Reliable Powder Patterns from Spikelets (Q)CPMG NMR Spectra: Simplification of UWNMR Crystallography Analysis. Molecules, 2021, 26, 6051.	3.8	3
63	Temperatureâ€Induced Phase Transition in Aqueous Solutions of Poly(<i>Nâ€</i> isopropylacrylamide)â€Based Block Copolymer. Macromolecular Symposia, 2016, 369, 92-96.	0.7	1