
Stella Kutrovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exciton energy spectra in polyyne chains. Physical Review Research, 2021, 3, .	1.3	5
2	Field-Induced Assembly of sp-sp2 Carbon Sponges. Nanomaterials, 2021, 11, 763.	1.9	7
3	Exciton radiative lifetime in a monoatomic carbon chain. New Journal of Physics, 2021, 23, 033007.	1.2	1
4	Formation of Fractal Dendrites by Laser-Induced Melting of Aluminum Alloys. Nanomaterials, 2021, 11, 1043.	1.9	5
5	Terahertz transitions in finite carbon chains. Physical Review Research, 2021, 3, .	1.3	2
6	Excitonic Fine Structure in Emission of Linear Carbon Chains. Nano Letters, 2020, 20, 6502-6509.	4.5	25
7	Electric field assisted alignment of monoatomic carbon chains. Scientific Reports, 2020, 10, 9709.	1.6	14
8	Colloidal quasicrystals based on hybrid nanoparticles. Journal of Physics: Conference Series, 2019, 1189, 012014.	0.3	0
9	Metamaterials based on titanium dioxide rolls. Journal of Physics: Conference Series, 2019, 1164, 012013.	0.3	0
10	The method of electro-induced lithography for Tamm plasmon observation. Journal of Physics: Conference Series, 2019, 1164, 012011.	0.3	0
11	Nano-Antennas Based on Silicon-Gold Nanostructures. Scientific Reports, 2019, 9, 338.	1.6	28
12	Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles. Scientific Reports, 2019, 9, 7023.	1.6	8
13	Hybrid gold-silicon systems with tuning optical properties. Journal of Physics: Conference Series, 2019, 1164, 012012.	0.3	1
14	New challenges of femto-nanophotonics: basic principles and possible applications. Journal of Physics: Conference Series, 2019, 1164, 012016.	0.3	0
15	The modeling of the light sensitive titanium dioxide microrolls doped by noble metal nanoparticles. Journal of Physics: Conference Series, 2019, 1331, 012024.	0.3	0
16	Photosensitive free-standing ultra-thin carbyne–gold films. Optical and Quantum Electronics, 2019, 51, 1.	1.5	3
17	Metal-carbyne clusters for SERS realization. Journal of Physics: Conference Series, 2018, 951, 012020.	0.3	1
18	Verification of the quantum dimension effects in electricsl condactivity with different topology of laser-induced thin-film structures. Journal of Physics: Conference Series, 2018, 951, 012018.	0.3	1

STELLA KUTROVSKAYA

#	Article	IF	CITATIONS
19	Colloidal quasicrystal for photonics. Journal of Physics: Conference Series, 2018, 951, 012022.	0.3	1
20	Laser synthesis of hybrids Si-Au complex. Journal of Physics: Conference Series, 2018, 951, 012023.	0.3	0
21	AFM lithography for TAMM plasmons observation. Journal of Physics: Conference Series, 2018, 951, 012021.	0.3	0
22	Laser synthesis of a hybrid gold-silicon clusters with variable optical propeties. , 2018, , .		0
23	New metal-carbon composite materials for nanophotonics. , 2018, , .		0
24	The Laser-Assisted Synthesis of Linear Carbon Chains Stabilized by Noble Metal Particles. , 2018, , .		0
25	Titanium nanotubes doped NPs of noble metals. , 2018, , .		0
26	Cavitationâ€Free Continuousâ€Wave Laser Ablation from a Solid Target to Synthesize Lowâ€Sizeâ€Dispersed Gold Nanoparticles. ChemPhysChem, 2017, 18, 1185-1191.	1.0	11
27	Stimulated absorption of light in bosonic cascades of excitons. Superlattices and Microstructures, 2017, 109, 454-456.	1.4	3
28	The crossover between tunnel and hopping conductivity in granulated films of noble metals. Superlattices and Microstructures, 2017, 111, 335-339.	1.4	16
29	Tunnel/jump electroconductivity in the laser-induced nanocluster structures with controlled topology. Optical and Quantum Electronics, 2017, 49, 1.	1.5	0
30	The synthesis of resonant gold-silicon NPs in liquid. AIP Conference Proceedings, 2017, , .	0.3	0
31	The Synthesis of Hybrid Gold-Silicon Nano Particles in a Liquid. Scientific Reports, 2017, 7, 10284.	1.6	32
32	Measurements of electrophysical properties of metal microcontacts using fractal geometry methods for the analysis of atomic-force-microscopy data. Journal of Surface Investigation, 2017, 11, 333-338.	0.1	0
33	One-dimensional Tamm plasmons: Spatial confinement, propagation, and polarization properties. Physical Review B, 2017, 96, .	1.1	16
34	Metal-carbon nanoclusters for SERS. Journal of Physics: Conference Series, 2017, 784, 012031.	0.3	1
35	The CW-laser ablation of resonant silicon NPs in liquid. , 2017, , .		0
36	The topological electroconductivity control in the semiconductor/metal/carbon unit by laser-induced nanogranular structures. , 2017, , .		0

#	Article	IF	CITATIONS
37	Atomic-force lithography for photonic applications. , 2017, , .		1
38	The colloidal systems on semiconductor nanoparticles. , 2017, , .		0
39	The laser-induced synthesis of linear carbon chains. , 2017, , .		1
40	Metal-carbyne clusters for SERS realization. , 2017, , .		0
41	Structure and Morphology Effects on the Optical Properties of Bimetallic Nanoparticle Films Laser Deposited on a Glass Substrate. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	8
42	Coherent quantum states in the laser-induced thin film nanocluster structures: optical and electrophysical properties. EPJ Web of Conferences, 2017, 161, 01001.	0.1	0
43	Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes. Proceedings of SPIE, 2016, , .	0.8	3
44	Formation of quasiperiodic bimetal thin films with controlled optical and electrical properties. , 2016, , .		2
45	Laser-assisted deposition of the bimetal thin films with pre-difined optical and electrical properties. , 2016, , .		Ο
46	Laser-induced synthesis of metal–carbon materials for implementing surface-enhanced Raman scattering. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 263-270.	0.2	23
47	Laser formation of the metal-carbon islands thin films for optical application. , 2016, , .		0
48	Optical properties of multilayer bimetallic films obtained by laser deposition of colloidal particles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2016, 121, 765-768.	0.2	6
49	Progress in the Design of New Photonics and Optoelectronics Elements Using Advantages of Contemporary Femto-Nanophotonics. Journal of Russian Laser Research, 2016, 37, 494-506.	0.3	5
50	The obtaining and deposition of silicon nanoparticles: Size control, luminescence in visible spectra. , 2016, , .		0
51	Laser-induced synthesis of nanostructured metal–carbon clusters and complexes. Optical and Quantum Electronics, 2016, 48, 1.	1.5	9
52	Two-stage laser-induced synthesis of linear carbon chains. Quantum Electronics, 2016, 46, 627-633.	0.3	22
53	Effect of the procedure for preparing porous membranes based on interpolyelectrolyte complexes on their structure, surface morphology, and surface electrical properties. Russian Journal of Applied Chemistry, 2016, 89, 271-279.	0.1	3
54	Laser-induced semiconductor nanocluster structures on the solid surface: new physical principles to construct the hybrid elements for photonics. Optical and Quantum Electronics, 2016, 48, 1.	1.5	12

STELLA KUTROVSKAYA

#	Article	IF	CITATIONS
55	Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime. Proceedings of SPIE, 2016, , .	0.8	0
56	Quantum Domains for Macroscopic Transport Effects in Nanostructures with Control Topology: Optics and e-Conductivity. EPJ Web of Conferences, 2015, 103, 03001.	0.1	0
57	Laser ablation of carbon targets placed in a liquid. Quantum Electronics, 2015, 45, 731-735.	0.3	13
58	Optical properties of nanostructured gold-silver films formed by deposition of small colloid drops. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 119-123.	0.2	31
59	Laser Nanostructuring of the PbX Thin Films for Creation of the Semiconductor Devices with Controlled Properties. Physics Procedia, 2014, 56, 1115-1125.	1.2	1
60	Deposition of bimetallic Au/Ag clusters by the method of laser deposition of nanoparticles from colloidal systems. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 116, 324-327.	0.2	13
61	Electrical properties of metal cluster structures formed on the surface of dielectrics. Technical Physics Letters, 2014, 40, 529-532.	0.2	10
62	New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena. Laser Physics, 2014, 24, 074010.	0.6	19
63	Laser formation of collodial alloys of the noble nanoparticles and deposition of the microclusters on the glass substrate. , 2014, , .		0
64	Laser-induced formation of semiconductor nanoparticles and structures. Laser Physics, 2014, 24, 074002.	0.6	9
65	Laser Formation of Semiconductor Coatings using Droplet Technology. Physics Procedia, 2012, 39, 401-408.	1.2	6
66	CW laser-induced formation of a nanoparticle ensemble with a bimodal size distribution on PbTe films. Quantum Electronics, 2011, 41, 735-737.	0.3	17
67	Carbon nanotube reinforced corundum-based composite material. Glass and Ceramics (English) Tj ETQq1 1 0.784	1314 rgBT 0.2	/Qverlock 10
68	CW laser-induced generation of periodic ring structures on thin PbSe films. Quantum Electronics, 2011, 41, 441-446.	0.3	7
69	Creating micro and nanostructured metal-carbon multilayers and bulky materials at controlled laser action. Physics Procedia, 2010, 5, 221-230.	1.2	1
70	Laser deposition of multiwalled titanium oxide microtubes. Quantum Electronics, 2010, 40, 642-646.	0.3	6
71	Solidification structures on carbon materials surface-melted by repetitive laser pulses. Quantum Electronics, 2009, 39, 333-336.	0.3	2
72	Specific features of plasma etching of helical PbTe structures on BaF2(111) substrates. Physics of the Solid State, 2009, 51, 1919-1922.	0.2	1

STELLA KUTROVSKAYA

#	Article	IF	CITATIONS
73	Formation of carbon submicron structures and nanostructures on the surface of cold substrates exposed to laser radiation in air. Quantum Electronics, 2008, 38, 73-76.	0.3	5
74	Formation of nanostructures at the glass-carbon surface exposed to laser radiation. Quantum Electronics, 2007, 37, 1051-1054.	0.3	7
75	Generation of nanostructures on a surface of a cold substrate at laser action on carbon materials in atmospheric air. , 2007, , .		0
76	Carbon's nanostructures formed in a field of powerful laser radiation. Proceedings of SPIE, 2007, , .	0.8	1