Anthony Tabet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368363/publications.pdf

Version: 2024-02-01

		1040056	839539	
18	321	9	18	
papers	citations	h-index	g-index	
10	10	10	EE2	
19	19	19	552	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication, 2017, 9, 044102.	7.1	98
2	Modulating stiffness with photo-switchable supramolecular hydrogels. Polymer Chemistry, 2019, 10, 467-472.	3.9	48
3	Designing Nextâ€Generation Local Drug Delivery Vehicles for Glioblastoma Adjuvant Chemotherapy: Lessons from the Clinic. Advanced Healthcare Materials, 2019, 8, e1801391.	7.6	34
4	Mechanical Characterization of Human Brain Tissue and Soft Dynamic Gels Exhibiting Electromechanical Neuroâ€Mimicry. Advanced Healthcare Materials, 2019, 8, e1900068.	7.6	27
5	Customizing MRI ompatible Multifunctional Neural Interfaces through Fiber Drawing. Advanced Functional Materials, 2021, 31, 2104857.	14.9	21
6	Cucurbit[8]uril-Derived Graphene Hydrogels. ACS Macro Letters, 2019, 8, 1629-1634.	4.8	15
7	Remotely Controlled Proton Generation for Neuromodulation. Nano Letters, 2020, 20, 6535-6541.	9.1	13
8	Gels without Vapor Pressure: Soft, Nonaqueous, and Solventâ€Free Supramolecular Biomaterials for Prospective Parenteral Drug Delivery Applications. Advanced Healthcare Materials, 2019, 8, e1800908.	7.6	10
9	Mucoadhesive wafers composed of binary polymer blends for sublingual delivery and preservation of protein vaccines. Journal of Controlled Release, 2021, 330, 427-437.	9.9	10
10	Modular Integration of Hydrogel Neural Interfaces. ACS Central Science, 2021, 7, 1516-1523.	11.3	9
11	Supramolecular protein-mediated assembly of brain extracellular matrix glycans. F1000Research, 2018, 7, 1827.	1.6	8
12	Protein-mediated gelation and nano-scale assembly of unfunctionalized hyaluronic acid and chondroitin sulfate. F1000Research, 2018, 7, 1827.	1.6	7
13	Changes in Brain Neuroimmunology Following Injury and Disease. Frontiers in Integrative Neuroscience, 2022, 16, 894500.	2.1	7
14	Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I. F1000Research, 2017, 5, 2811.	1.6	5
15	Applying support-vector machine learning algorithms toward predicting host–guest interactions with cucurbit[7]uril. Physical Chemistry Chemical Physics, 2020, 22, 14976-14982.	2.8	3
16	Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I. F1000Research, 2016, 5, 2811.	1.6	3
17	Polymer-Based Dual-Responsive Self-Emulsifying Nanodroplets as Potential Carriers for Poorly Soluble Drugs. ACS Applied Bio Materials, 2021, 4, 4441-4449.	4.6	2
18	Oleogels: Gels without Vapor Pressure: Soft, Nonaqueous, and Solventâ€Free Supramolecular Biomaterials for Prospective Parenteral Drug Delivery Applications (Adv. Healthcare Mater. 6/2019). Advanced Healthcare Materials, 2019, 8, 1970023.	7.6	1