Shuilin Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936836/publications.pdf Version: 2024-02-01

<u> Сылпым Мл</u>

#	Article	IF	CITATIONS
1	A Hierarchical Carbon Derived from Spongeâ€Templated Activation of Graphene Oxide for Highâ€Performance Supercapacitor Electrodes. Advanced Materials, 2016, 28, 5222-5228.	11.1	383
2	Oxygenâ€Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Ureaâ€Assisted Energyâ€Saving Hydrogen Production in Alkaline Electrolyte. Advanced Functional Materials, 2021, 31, 2104951.	7.8	247
3	An Aqueous Znâ€lon Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	10.2	244
4	Lithiophilic Cuâ€CuOâ€Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes. Advanced Materials, 2018, 30, 1705830.	11.1	217
5	Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro‣upercapacitors with Ultrahigh Power Output. Advanced Materials, 2018, 30, e1801384.	11.1	178
6	Binder-free hierarchical VS ₂ electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. Journal of Materials Chemistry A, 2019, 7, 16330-16338.	5.2	152
7	A Biomimetic Hierarchical Scaffold: Natural Growth of Nanotitanates on Three-Dimensional Microporous Ti-Based Metals. Nano Letters, 2008, 8, 3803-3808.	4.5	124
8	Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes. Scientific Reports, 2016, 6, 19028.	1.6	96
9	MoS2 nanobelts with (002) plane edges-enriched flat surfaces for high-rate sodium and lithium storage. Energy Storage Materials, 2018, 15, 65-74.	9.5	96
10	Creating Pores on Graphene Platelets by Lowâ€Temperature KOH Activation for Enhanced Electrochemical Performance. Small, 2016, 12, 2376-2384.	5.2	95
11	Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chemical Engineering Journal, 2020, 388, 124212.	6.6	92
12	Surfaceâ€Engineered Black Niobium Oxide@Graphene Nanosheets for Highâ€Performance Sodiumâ€IPotassiumâ€Ion Full Batteries. Small, 2019, 15, e1901272.	5.2	88
13	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
14	A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes and Pigments, 2020, 172, 107846.	2.0	75
15	Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution. Small, 2017, 13, 1701875.	5.2	66
16	Plasma-Modified Biomaterials for Self-Antimicrobial Applications. ACS Applied Materials & Interfaces, 2011, 3, 2851-2860.	4.0	61
17	Highly densified carbon electrode materials towards practical supercapacitor devices. Science China Materials, 2017, 60, 25-38.	3.5	57
18	Development of vertically aligned trimetallic Mg-Ni-Co oxide grass-like nanostructure for high-performance energy storage applications. Journal of Colloid and Interface Science, 2021, 582, 782-792.	5.0	57

SHUILIN WU

#	Article	IF	CITATIONS
19	Carbon Dots and a CdTe Quantum Dot Hybrid-Based Fluorometric Probe for Spermine Detection. Industrial & Engineering Chemistry Research, 2020, 59, 1723-1729.	1.8	56
20	Near-Infrared Light-Triggered Lysosome-Targetable Carbon Dots for Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces, 2021, 13, 53610-53617.	4.0	54
21	Corrosion products and mechanism on NiTi shape memory alloy in physiological environment. Journal of Materials Research, 2010, 25, 350-358.	1.2	53
22	A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage. Energy Storage Materials, 2018, 10, 282-290.	9.5	52
23	Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 8440-8446.	5.2	52
24	Pyrene-derivatized highly fluorescent carbon dots for the sensitive and selective determination of ferric ions and dopamine. Dyes and Pigments, 2019, 170, 107574.	2.0	51
25	Nitrogenâ€Doped Grapheneâ€Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction. Small, 2019, 15, e1901545.	5.2	50
26	Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions. Nano Research, 2019, 12, 2576-2583.	5.8	47
27	Nickel release behavior, cytocompatibility, and superelasticity of oxidized porous single-phase NiTi. Journal of Biomedical Materials Research - Part A, 2007, 81A, 948-955.	2.1	41
28	Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 19581-19588.	5.2	38
29	Fluorinated Carbonate Electrolyte with Superior Oxidative Stability Enables Longâ€Term Cycle Stability of Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Cathodes in Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002737.	10.2	37
30	Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries. Scientific Reports, 2015, 5, 14146.	1.6	34
31	Lithiophilicity conversion of the Cu surface through facile thermal oxidation: boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 2019, 7, 5726-5732.	5.2	34
32	Dilute Aqueousâ€Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Advanced Materials, 2021, 33, e2102390.	11.1	28
33	Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2586-2601.	2.1	22
34	Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Research, 2021, 14, 3545-3551.	5.8	16
35	Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes. Journal of Biomedical Materials Research - Part A, 2009, 89A, 483-489.	2.1	14
36	High-Performance NaVO ₃ with Mixed Cationic and Anionic Redox Reactions for Na-Ion Battery Applications. Chemistry of Materials, 2020, 32, 8836-8844.	3.2	14

SHUILIN WU

#	Article	IF	CITATIONS
37	Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chemical Engineering Journal, 2022, 450, 137923.	6.6	14
38	Hydrogen Evolution Reaction: Nitrogenâ€Doped Grapheneâ€Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction (Small 48/2019). Small, 2019, 15, 1970260.	5.2	11
39	Highly Ordered Mesoporous NiCo2O4 as a High Performance Anode Material for Li-Ion Batteries. Frontiers in Chemistry, 2019, 7, 521.	1.8	10
40	Diameterâ€Sensitive Breakdown of Singleâ€Walled Carbon Nanotubes upon KOH Activation. ChemPhysChem, 2017, 18, 1929-1936.	1.0	8
41	Investigation of plasma immersion ion implantation of nickel-titanium rod by multiple-grid particle-in-cell simulation. Journal of Applied Physics, 2008, 103, 053308.	1.1	7
42	Supercapacitors: A Hierarchical Carbon Derived from Spongeâ€Templated Activation of Graphene Oxide for Highâ€Performance Supercapacitor Electrodes (Adv. Mater. 26/2016). Advanced Materials, 2016, 28, 5331-5331.	11.1	7
43	Boosting capacity and operating voltage of LiVO3 as cathode for lithium-ion batteries by activating oxygen reaction in the lattice. Journal of Power Sources, 2022, 517, 230728.	4.0	7
44	Cationic Lanthanide Luminescent Copolymer: Design, Synthesis and Interaction with DNA. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 832-839.	1.2	5
45	Uniform starâ€polystyrene nanoparticles prepared by emulsion atom transfer radical polymerization. Polymer International, 2011, 60, 1638-1645.	1.6	5
46	Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chemical Engineering Journal, 2020, 388, 124238.	6.6	5
47	Interaction Between Fluorinated Amphiphilic Copolymer P(HFMA)-g-P(SPEG) and BSA. Journal of Dispersion Science and Technology, 2011, 32, 1185-1190.	1.3	1
48	Porous three-dimensional activated microwave exfoliated graphite oxide as an anode material for lithium ion batteries. RSC Advances, 2016, 6, 55176-55181.	1.7	1
49	Calcium filling of TiO <inf>2</inf> nanotubes on the surface of NiTi shape memory alloys by plasma immersion ion implantation. , 2008, , .		0

50

Interaction between the fluorinated amphiphilic copolymer poly(2,2,3,4,4,4â€hexafluorobutyl) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 222