Volodymyr P Kravchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons. Small, 2022, 18, e2105219.	5.2	19
2	Curvature-induced drift and deformation of magnetic skyrmions: Comparison of the ferromagnetic and antiferromagnetic cases. Physical Review B, 2022, 105, .	1.1	10
3	Screw Dislocations in Chiral Magnets. Physical Review Letters, 2022, 128, 157204.	2.9	8
4	Microwave resonances of magnetic skyrmions in thin film multilayers. Nature Communications, 2021, 12, 1909.	5.8	27
5	Chaotic antiferromagnetic nano-oscillator driven by spin torque. Physical Review B, 2021, 104, .	1.1	6
6	Unidirectional tilt of domain walls in equilibrium in biaxial stripes with Dzyaloshinskii–Moriya interaction. Journal Physics D: Applied Physics, 2020, 53, 395003.	1.3	5
7	Effect of curvature on the eigenstates of magnetic skyrmions. Physical Review B, 2020, 102, .	1.1	22
8	Domain wall diode based on functionally graded Dzyaloshinskii–Moriya interaction. Applied Physics Letters, 2020, 116, 222406.	1.5	5
9	Solitary wave excitations of skyrmion strings in chiral magnets. Physical Review B, 2020, 102, .	1.1	12
10	Curvature effects on phase transitions in chiral magnets. SciPost Physics, 2020, 9, .	1.5	17
11	Spontaneous deformation of flexible ferromagnetic ribbons induced by Dzyaloshinskii-Moriya interaction. Physical Review B, 2019, 100, .	1.1	14
12	Spin eigenexcitations of an antiferromagnetic skyrmion. Physical Review B, 2019, 99, .	1.1	28
13	Magnetization-induced shape transformations in flexible ferromagnetic rings. Physical Review B, 2019, 99, .	1.1	14
14	Curvature induced magnonic crystal in nanowires. SciPost Physics, 2019, 7, .	1.5	12
15	Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass. Physical Review B, 2018, 97, .	1.1	67
16	Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices. Physical Review Letters, 2018, 120, 067201.	2.9	64
17	Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality. Scientific Reports, 2018, 8, 866.	1.6	43
18	Chiral Skyrmion and Skyrmionium States Engineered by the Gradient of Curvature. Physical Review Applied, 2018, 10, .	1.5	26

Volodymyr P Kravchuk

#	Article	IF	CITATIONS
19	Fluctuation-induced Néel and Bloch skyrmions at topological insulator surfaces. Physical Review B, 2018, 98, .	1.1	8
20	Localization of magnon modes in a curved magnetic nanowire. Low Temperature Physics, 2018, 44, 634-643.	0.2	17
21	Geometry-induced motion of magnetic domain walls in curved nanostripes. Physical Review B, 2018, 98, .	1.1	41
22	Magnetization in narrow ribbons: curvature effects. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 385401.	0.7	40
23	Geometry induced phase transitions in magnetic spherical shell. Journal of Magnetism and Magnetic Materials, 2017, 443, 404-412.	1.0	26
24	Magnetism in curved geometries. Journal Physics D: Applied Physics, 2016, 49, 363001.	1.3	263
25	Rashba Torque Driven Domain Wall Motion in Magnetic Helices. Scientific Reports, 2016, 6, 23316.	1.6	39
26	Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions. Physical Review B, 2016, 94, .	1.1	81
27	Curvature and torsion effects in spin-current driven domain wall motion. Physical Review B, 2016, 93, .	1.1	49
28	Torsion-induced effects in magnetic nanowires. Physical Review B, 2015, 92, .	1.1	37
29	Curvature-induced domain wall pinning. Physical Review B, 2015, 92, .	1.1	64
30	Vortex polarity switching in magnets with surface anisotropy. Low Temperature Physics, 2015, 41, 361-374.	0.2	3
31	Resonantly excited precession motion of three-dimensional vortex core in magnetic nanospheres. Scientific Reports, 2015, 5, 11370.	1.6	18
32	Coupling of Chiralities in Spin and Physical Spaces: The Möbius Ring as a Case Study. Physical Review Letters, 2015, 114, 197204.	2.9	73
33	Curvature effects in statics and dynamics of low dimensional magnets. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 125202.	0.7	94
34	Effects of a spin-polarized current assisted Ã~rsted field in magnetization patterning. Journal of Applied Physics, 2015, 117, 213910.	1.1	0
35	Controllable vortex chirality switching on spherical shells. Journal of Applied Physics, 2015, 117, 083908.	1.1	14
			_

36 Domain wall dynamics at the local wire bend. , 2015, , .

3

#	Article	IF	CITATIONS
37	Torsion effects in a helix nanowire with easy-tangential anisotropy. , 2015, , .		0
38	Curvature induced chirality symmetry breaking in vortex core switching phenomena. Applied Physics Letters, 2014, 104, .	1.5	25
39	Effects of surface anisotropy on magnetic vortex core. Journal of Magnetism and Magnetic Materials, 2014, 361, 201-205.	1.0	10
40	Influence of Dzialoshinskii–Moriya interaction on static and dynamic properties of a transverse domain wall. Journal of Magnetism and Magnetic Materials, 2014, 367, 9-14.	1.0	31
41	Curvature Effects in Thin Magnetic Shells. Physical Review Letters, 2014, 112, 257203.	2.9	160
42	Stability of Magnetic Nanowires Against Spin-Polarized Current. Ukrainian Journal of Physics, 2014, 59, 1001-1006.	0.1	5
43	Regular and chaotic vortex core reversal by a resonant perpendicular magnetic field. Physical Review B, 2013, 88, .	1.1	19
44	Periodic magnetization structures generated by transverse spin current in magnetic nanowires. Physical Review B, 2013, 87, .	1.1	9
45	Periodic magnetic structures generated by spin–polarized currents in nanostripes. Applied Physics Letters, 2013, 103, 222401.	1.5	8
46	EQUILIBRIUM STATES OF SOFT MAGNETIC HEMISPHERICAL SHELL. Spin, 2013, 03, 1340003.	0.6	14
47	Saturation of Magnetic Films with Spin-Polarized Current in the Presence of a Magnetic Field. Ukrainian Journal of Physics, 2013, 58, 666-672.	0.1	0
48	Magnetically Capped Rolled-up Nanomembranes. Nano Letters, 2012, 12, 3961-3966.	4.5	50
49	Magnetic vortex-antivortex crystals generated by spin-polarized current. Physical Review B, 2012, 86, .	1.1	13
50	Equilibrium magnetic states in individual hemispherical permalloy caps. Applied Physics Letters, 2012, 101, .	1.5	72
51	Magnetic vortices on closely packed spherically curved surfaces. Physical Review B, 2012, 85, .	1.1	52
52	Out-of-surface vortices in spherical shells. Physical Review B, 2012, 85, .	1.1	59
53	Spin-transfer torque and current-induced vortex superlattices in nanomagnets. Physical Review B, 2011, 84, .	1.1	11
54	Off-centred immobile magnetic vortex under influence of spin-transfer torque. Journal Physics D: Applied Physics, 2011, 44, 285001.	1.3	6

Volodymyr P Kravchuk

#	Article	IF	CITATIONS
55	Magnetic vortex dynamics induced by an electrical current. International Journal of Quantum Chemistry, 2010, 110, 83-97.	1.0	62
56	Multiple vortex-antivortex pair generation in magnetic nanodots. Physical Review B, 2010, 81, .	1.1	18
57	Nucleation of a vortex-antivortex pair in the presence of an immobile magnetic vortex. Physical Review B, 2009, 80, .	1.1	29
58	Switching phenomena in magnetic vortex dynamics. Low Temperature Physics, 2008, 34, 528-534.	0.2	15
59	Controlled vortex core switching in a magnetic nanodisk by a rotating field. Journal of Applied Physics, 2007, 102, .	1.1	62
60	Effective anisotropy of thin nanomagnets: Beyond the surface-anisotropy approach. Physical Review B, 2007, 76, .	1.1	15
61	Equilibrium magnetisation structures in ferromagnetic nanorings. Journal of Magnetism and Magnetic Materials, 2007, 310, 116-125.	1.0	40
62	Thin ferromagnetic nanodisk in transverse magnetic field. Physics of the Solid State, 2007, 49, 1923-1931.	0.2	19