List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9368100/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chemical Society Reviews, 2022, 51, 128-152.                                    | 38.1 | 52        |
| 2  | Glycerolâ€Based Polyurethane Nanoparticles Reduce Friction and Wear of Lubricant Formulations.<br>Macromolecular Materials and Engineering, 2022, 307, .                                | 3.6  | 5         |
| 3  | Nanoconfinement in miniemulsion increases reaction rates of thiol–ene photopolymerization and yields high molecular weight polymers. Polymer Chemistry, 2022, 13, 2831-2841.            | 3.9  | 5         |
| 4  | Behavior of colloidal gels made of thermoresponsive anisotropic nanoparticles. Scientific Reports, 2022, 12, .                                                                          | 3.3  | 2         |
| 5  | Controlling the semi-permeability of protein nanocapsules influences the cellular response to macromolecular payloads. Journal of Materials Chemistry B, 2021, 9, 8389-8398.            | 5.8  | 4         |
| 6  | Self-sustaining enzyme nanocapsules perform on-site chemical reactions. Nanoscale, 2021, 13, 4051-4059.                                                                                 | 5.6  | 11        |
| 7  | Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne<br>Environment. Macromolecules, 2021, 54, 3659-3667.                                | 4.8  | 16        |
| 8  | Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nature Catalysis, 2021, 4, 479-487.                                         | 34.4 | 68        |
| 9  | Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules, 2021, 22, 2976-2984.                                                                                            | 5.4  | 7         |
| 10 | Nanofibrous Photocatalytic Membranes Based on Tailored Anisotropic Gold/Ceria Nanoparticles. ACS<br>Applied Materials & Interfaces, 2021, 13, 37578-37588.                              | 8.0  | 12        |
| 11 | Waterâ€Soluble Photoinitiators from Dimethylaminoâ€Substituted Monoacylphosphine Oxide for<br>Hydrogel and Latex Preparation. Macromolecular Chemistry and Physics, 2021, 222, 2100217. | 2.2  | 13        |
| 12 | Tailoring the mechanoresponsive release from silica nanocapsules. Nanoscale, 2021, 13, 15415-15421.                                                                                     | 5.6  | 5         |
| 13 | Plasmonic and Semiconductor Nanoparticles Interfere with Stereolithographic 3D Printing. ACS<br>Applied Materials & Interfaces, 2020, 12, 50834-50843.                                  | 8.0  | 9         |
| 14 | Oneâ€Step Generation of Core–Gap–Shell Microcapsules for Stimuliâ€Responsive Biomolecular Sensing.<br>Advanced Functional Materials, 2020, 30, 2006019.                                 | 14.9 | 17        |
| 15 | Responsive Colloidosomes with Triple Function for Anticorrosion. ACS Applied Materials &<br>Interfaces, 2020, 12, 42129-42139.                                                          | 8.0  | 27        |
| 16 | Glass Transition of Disentangled and Entangled Polymer Melts: Single-Chain-Nanoparticles Approach.<br>Macromolecules, 2020, 53, 7312-7321.                                              | 4.8  | 25        |
| 17 | Impact of the Solvent Quality on the Local Dynamics of Soft and Swollen Polymer Nanoparticles Functionalized with Polymer Chains. Macromolecules, 2020, 53, 7561-7569.                  | 4.8  | 6         |
| 18 | Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension. Polymers, 2020, 12, 1844.                                           | 4.5  | 5         |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their<br>Use as Responsive Delivery Systems. Biomacromolecules, 2020, 21, 2764-2771. | 5.4  | 17        |
| 20 | Polymer-functionalized polymer nanoparticles and their behaviour in suspensions. Polymer Chemistry, 2020, 11, 2119-2128.                                                        | 3.9  | 21        |
| 21 | Dynamics of Soft and Hairy Polymer Nanoparticles in a Suspension by NMR Relaxation.<br>Macromolecules, 2020, 53, 844-851.                                                       | 4.8  | 14        |
| 22 | Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022.                                                                                         | 14.6 | 64        |
| 23 | A Reversible Proton Generator with On/Off Thermoswitch. Macromolecular Rapid Communications, 2019, 40, 1800713.                                                                 | 3.9  | 6         |
| 24 | Gold nanocolloid–protein interactions and their impact on β-sheet amyloid fibril formation. RSC<br>Advances, 2018, 8, 980-986.                                                  | 3.6  | 12        |
| 25 | Largeâ€Scale Preparation of Polymer Nanocarriers by Highâ€Pressure Microfluidization. Macromolecular<br>Materials and Engineering, 2018, 303, 1700505.                          | 3.6  | 21        |
| 26 | Nanozymes in Nanofibrous Mats with Haloperoxidase-like Activity To Combat Biofouling. ACS Applied<br>Materials & Interfaces, 2018, 10, 44722-44730.                             | 8.0  | 46        |
| 27 | Comblike Ionic Complexes of Hyaluronic Acid and Alkanoylcholine Surfactants as a Platform for Drug<br>Delivery Systems. Biomacromolecules, 2018, 19, 3669-3681.                 | 5.4  | 6         |
| 28 | NMR Imaging for the Study of Drug Tablets for Controlled Release. , 2018, , 827-840.                                                                                            |      | 0         |
| 29 | Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer<br>Spheroids. Angewandte Chemie - International Edition, 2017, 56, 6083-6087.           | 13.8 | 66        |
| 30 | Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer<br>Spheroids. Angewandte Chemie, 2017, 129, 6179-6183.                                  | 2.0  | 11        |
| 31 | Composite Cholesteric Nanocellulose Films with Enhanced Mechanical Properties. Chemistry of Materials, 2017, 29, 789-795.                                                       | 6.7  | 64        |
| 32 | Two-dimensional arrays of cell-laden polymer hydrogel modules. Biomicrofluidics, 2016, 10, 014110.                                                                              | 2.4  | 12        |
| 33 | Linear assembly of patchy and non-patchy nanoparticles. Faraday Discussions, 2016, 191, 189-204.                                                                                | 3.2  | 26        |
| 34 | Surface patterning of nanoparticles with polymer patches. Nature, 2016, 538, 79-83.                                                                                             | 27.8 | 257       |
| 35 | Temperature-Responsive Nanofibrillar Hydrogels for Cell Encapsulation. Biomacromolecules, 2016, 17, 3244-3251.                                                                  | 5.4  | 64        |
| 36 | Colloidal cholesteric liquid crystal in spherical confinement. Nature Communications, 2016, 7, 12520.                                                                           | 12.8 | 157       |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | NMR Imaging for the Study of Drug Tablets for Controlled Release. , 2016, , 1-14.                                                                                                   |      | 0         |
| 38 | Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes. Journal of Water Reuse and Desalination, 2015, 5, 326-334. | 2.3  | 18        |
| 39 | An Exploratory Microfluidic Approach to Photopolymerized Polymerâ€Inorganic Nanocomposite Films.<br>Macromolecular Materials and Engineering, 2015, 300, 1071-1078.                 | 3.6  | 1         |
| 40 | Coassembly of Nanorods and Nanospheres in Suspensions and in Stratified Films. Angewandte Chemie -<br>International Edition, 2015, 54, 5618-5622.                                   | 13.8 | 53        |
| 41 | Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale, 2015, 7, 6612-6618.                                        | 5.6  | 44        |
| 42 | Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals. Biomacromolecules, 2015,<br>16, 2455-2462.                                                                  | 5.4  | 173       |
| 43 | Shape transformations of soft matter governed by bi-axial stresses. Soft Matter, 2015, 11, 4600-4605.                                                                               | 2.7  | 37        |
| 44 | Supramolecular Nanofibrillar Polymer Hydrogels. Advances in Polymer Science, 2015, , 167-208.                                                                                       | 0.8  | 24        |
| 45 | Coassembly of Gold Nanoparticles and Cellulose Nanocrystals in Composite Films. Langmuir, 2015, 31, 5033-5041.                                                                      | 3.5  | 61        |
| 46 | Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers. Angewandte<br>Chemie - International Edition, 2014, 53, 2648-2653.                              | 13.8 | 77        |
| 47 | Structural and Optical Properties of Self-Assembled Chains of Plasmonic Nanocubes. Nano Letters, 2014, 14, 6314-6321.                                                               | 9.1  | 92        |
| 48 | Microfluidic Generation of Composite Biopolymer Microgels with Tunable Compositions and Mechanical Properties. Biomacromolecules, 2014, 15, 2419-2425.                              | 5.4  | 36        |
| 49 | Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. Journal of Materials Chemistry B, 2014, 2, 1724. | 5.8  | 164       |
| 50 | Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.                         | 13.7 | 100       |
| 51 | Improved antifouling properties of polymer membranes using a â€~layer-by-layer' mediated method.<br>Journal of Materials Chemistry B, 2013, 1, 5651.                                | 5.8  | 35        |
| 52 | Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.                                                                                                      | 2.7  | 18        |
| 53 | Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nature Communications, 2013, 4, 1586.                            | 12.8 | 518       |
| 54 | Multiple Shape Transformations of Composite Hydrogel Sheets. Journal of the American Chemical Society, 2013, 135, 4834-4839.                                                        | 13.7 | 302       |

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Colloidal analogs of molecular chain stoppers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18775-18779.                                               | 7.1  | 67        |
| 56 | Controlling the Degree of Polymerization, Bond Lengths, and Bond Angles of Plasmonic Polymers.<br>Journal of the American Chemical Society, 2012, 134, 18853-18859.                                   | 13.7 | 68        |
| 57 | NMR Imaging and Its Application in the Study of Pharmaceutical Tablets. ACS Symposium Series, 2011, , 441-457.                                                                                        | 0.5  | 0         |
| 58 | Fouling-resistant polymer brush coatings. Polymer, 2011, 52, 5419-5425.                                                                                                                               | 3.8  | 61        |
| 59 | Shape memory properties of main chain bile acids polymers. Polymer, 2010, 51, 22-25.                                                                                                                  | 3.8  | 19        |
| 60 | Effect of molecular architecture on the self-diffusion of polymers in aqueous systems: A comparison of linear, star, and dendritic poly(ethylene glycol)s. Polymer, 2010, 51, 2345-2350.              | 3.8  | 10        |
| 61 | NMR spectroscopy and imaging studies of pharmaceutical tablets made of starch. Carbohydrate Polymers, 2009, 75, 369-379.                                                                              | 10.2 | 46        |
| 62 | Diffusion of molecular probes and the effects of their interactions with polymer matrices as studied by pulsed-field gradient NMR spectroscopy. Canadian Journal of Chemistry, 2008, 86, 579-585.     | 1.1  | 5         |
| 63 | Membrane Formation and Drug Loading Effects in High Amylose Starch Tablets Studied by NMR Imaging.<br>Biomacromolecules, 2008, 9, 1248-1254.                                                          | 5.4  | 22        |
| 64 | Effect of Ionic Binding on the Self-Diffusion of Anionic Dendrimers and Hydrophilic Polymers in<br>Aqueous Systems as Studied by Pulsed Gradient NMR Techniques. Macromolecules, 2007, 40, 3644-3649. | 4.8  | 15        |
| 65 | Study of hydration of cross-linked high amylose starch by solid state 13C NMR spectroscopy.<br>Carbohydrate Research, 2007, 342, 1525-1529.                                                           | 2.3  | 25        |
| 66 | Water Diffusion in Drug Delivery Systems Made of High-Amylose Starch as Studied by NMR Imaging. ACS<br>Symposium Series, 2006, , 105-120.                                                             | 0.5  | 0         |
| 67 | Imaging of High-Amylose Starch Tablets. 3. Initial Diffusion and Temperature Effects.<br>Biomacromolecules, 2005, 6, 3367-3372.                                                                       | 5.4  | 36        |
| 68 | Solute Size Effects on the Diffusion in Biofilms ofStreptococcus mutans. Biofouling, 2004, 20, 189-201.                                                                                               | 2.2  | 29        |