
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibration of layered nanobeams with periodic nanostructures. Mechanics Based Design of Structures and Machines, 2023, 51, 620-641.	3.4	4
2	Transverse wave propagation analysis in single-walled and double-walled carbon nanotubes via higher-order doublet mechanics theory. Waves in Random and Complex Media, 2023, 33, 762-793.	1.6	4
3	Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass. Mechanics Based Design of Structures and Machines, 2022, 50, 841-857.	3.4	14
4	Dynamic analysis of functionally graded beams with periodic nanostructures. Composite Structures, 2021, 257, 113169.	3.1	1
5	A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory. European Journal of Mechanics, A/Solids, 2021, 86, 104199.	2.1	18
6	Buckling analysis of functionally graded beams with periodic nanostructures using doublet mechanics theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	3
7	A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Science and Technology, 2021, 111, 106550.	2.5	37
8	On three-dimensional dynamics of fibre-reinforced functionally graded plates when fibres resist bending. Journal of Engineering Mathematics, 2021, 128, 1.	0.6	2
9	Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines, 2020, 48, 164-191.	3.4	37
10	Free vibration and buckling analysis of laminated composites and sandwich microbeams using a transverse shear-normal deformable beam theory. JVC/Journal of Vibration and Control, 2020, 26, 214-228.	1.5	13
11	Vibration of functionally graded shear and normal deformable porous microplates via finite element method. Composite Structures, 2020, 237, 111934.	3.1	21
12	Bifurcation buckling conditions of FGM plates with different boundaries. Composite Structures, 2020, 245, 112325.	3.1	6
13	Nonlocal effect on boundary conditions of cantilever nanobeam. AIP Conference Proceedings, 2020, , .	0.3	2
14	Vibration analysis of Love nanorods using doublet mechanics theory. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	9
15	Vibration of a rotating composite beam clamped-off the axis of rotation. Composite Structures, 2019, 225, 111174.	3.1	10
16	Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory. International Journal of Mechanical Sciences, 2019, 159, 165-181.	3.6	32
17	Torsional dynamics of coaxial nanotubes with different lengths in viscoelastic medium. Microsystem Technologies, 2019, 25, 3943-3957.	1.2	8
18	On the vibration of size dependent rotating laminated composite and sandwich microbeams via a transverse shear-normal deformation theory. Composite Structures, 2019, 216, 290-300.	3.1	17

#	Article	IF	CITATIONS
19	Plane strain polar elasticity of fibre-reinforced functionally graded materials and structures. Journal of Mechanics of Materials and Structures, 2019, 14, 497-535.	0.4	8
20	Buckling of laminated composite and sandwich beams due to axially varying in-plane loads. Composite Structures, 2019, 210, 391-408.	3.1	34
21	Dynamic stability of harmonically excited nanobeams including axial inertia. JVC/Journal of Vibration and Control, 2019, 25, 820-833.	1.5	17
22	Dynamics of a functionally graded Timoshenko beam considering new spectrums. Composite Structures, 2019, 207, 273-291.	3.1	10
23	Buckling analysis of double nanofibers embeded in an elastic medium using doublet mechanics theory. Composite Structures, 2018, 202, 355-363.	3.1	14
24	Vibration of a rotating composite beam with an attached point mass. Composite Structures, 2018, 190, 1-9.	3.1	33
25	Structural modelling of nanorods and nanobeams using doublet mechanics theory. International Journal of Mechanics and Materials in Design, 2018, 14, 195-212.	1.7	23
26	Buckling of cross-ply composite plates with linearly varying In-plane loads. Composite Structures, 2018, 183, 221-231.	3.1	16
27	Wave Propagation Analysis in Beams Using Shear Deformable Beam Theories Considering Second Spectrum. Journal of Mechanics, 2018, 34, 279-289.	0.7	10
28	Vibration and buckling analysis of nanotubes (nanofibers) embedded in an elastic medium using Doublet Mechanics. Journal of Engineering Mathematics, 2018, 109, 85-111.	0.6	18
29	Statics and dynamics of nanorods embedded in an elastic medium: Nonlocal elasticity and lattice formulations. European Journal of Mechanics, A/Solids, 2018, 67, 254-271.	2.1	29
30	Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics. Composites Part B: Engineering, 2018, 137, 60-73.	5.9	39
31	Nonlinear Wave Modulation in Nanorods Using Nonlocal Elasticity Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 709-719.	0.4	4
32	Axial Wave Reflection and Transmission in Stepped Nanorods Using Doublet Mechanics Theory. MATEC Web of Conferences, 2018, 148, 15002.	0.1	2
33	Dynamic response of a functionally graded tube embedded in an elastic medium due to SH-Waves. Composite Structures, 2018, 206, 22-32.	3.1	20
34	Free vibration of axially loaded composite beams using a four-unknown shear and normal deformation theory. Composite Structures, 2017, 178, 406-414.	3.1	38
35	Wave propagation in double walled carbon nanotubes by using doublet mechanics theory. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 345-357.	1.3	27
36	Axial dynamics of a nanorod embedded in an elastic medium using doublet mechanics. Composite Structures, 2017, 160, 1268-1278.	3.1	40

#	Article	IF	CITATIONS
37	Longitudinal Vibration of CNTs Viscously Damped in Span. International Journal of Engineering and Applied Sciences, 2017, 9, 22-22.	0.1	10
38	Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	24
39	Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity. International Journal of Mechanics and Materials in Design, 2016, 12, 71-84.	1.7	42
40	Vibration analysis of symmetric laminated composite plates with attached mass. Mechanics of Advanced Materials and Structures, 2016, 23, 136-145.	1.5	14
41	Forced vibration of nanorods using nonlocal elasticity. Advances in Nano Research, 2016, 4, 265-279.	0.9	22
42	Bending of CNTs Under The Partial Uniform Load. International Journal of Engineering and Applied Sciences, 2016, 8, 21-21.	0.1	6
43	Wave propagation analysis of embedded (coupled) functionally graded nanotubes conveying fluid. Composite Structures, 2015, 132, 1260-1273.	3.1	45
44	Flapwise vibration of rotating composite beams. Composite Structures, 2015, 134, 672-679.	3.1	30
45	A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial van der Waals force effects. JVC/Journal of Vibration and Control, 2015, 21, 3132-3154.	1.5	27
46	Torsional statics and dynamics of nanotubes embedded in an elastic medium. Composite Structures, 2014, 114, 80-91.	3.1	66
47	On the vibration of nanorods restrained by a linear spring in-span. Mechanics Research Communications, 2014, 57, 90-96.	1.0	33
48	Longitudinal wave propagation in multiwalled carbon nanotubes. Composite Structures, 2014, 107, 578-584.	3.1	73
49	On the vibration of aligned carbon nanotube reinforced composite beams. Advances in Nano Research, 2014, 2, 199-210.	0.9	13
50	Thermal Buckling of Composite Beam. , 2014, , 4904-4910.		0
51	A note on semi-inverse method for buckling of axially functionally graded beams. Journal of Reinforced Plastics and Composites, 2013, 32, 511-512.	1.6	3
52	Three dimensional mechanical buckling of FG plates with general boundary conditions. Composite Structures, 2013, 96, 174-193.	3.1	24
53	Three dimensional shear buckling of FG plates with various boundary conditions. Composite Structures, 2013, 96, 670-682.	3.1	18
54	Forced transverse vibration of nanoplates using nonlocal elasticity. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1752-1759.	1.3	39

#	Article	IF	CITATIONS
55	Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. International Journal of Engineering Science, 2012, 56, 17-28.	2.7	96
56	Vibration analyses of FGM plates with in-plane material inhomogeneity by Ritz method. Composite Structures, 2012, 94, 1398-1405.	3.1	55
57	Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mechanics Research Communications, 2012, 43, 34-40.	1.0	133
58	Some Complicating Effects in the Vibration of Composite Beams. , 2011, , .		0
59	Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 954-959.	1.3	195
60	Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1229-1234.	1.3	102
61	On the forced vibration of carbon nanotubes via a non-local Euler—Bernoulli beam model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224, 497-503.	1.1	37
62	Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Computational Materials Science, 2010, 49, 619-627.	1.4	79
63	Vibration Analysis of Inclusion Reinforced Composite Square Plates under Various Boundary Conditions. Journal of Reinforced Plastics and Composites, 2009, 28, 995-1012.	1.6	3
64	Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 861-864.	1.3	304
65	A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1651-1655.	1.3	556
66	A new shear deformation theory for laminated composite plates. Composite Structures, 2009, 89, 94-101.	3.1	433
67	Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium. Archive of Applied Mechanics, 2008, 78, 711-723.	1.2	44
68	Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory. Composite Structures, 2008, 82, 155-157.	3.1	51
69	Vibration of multi-walled carbon nanotubes by generalized shear deformation theory. International Journal of Mechanical Sciences, 2008, 50, 837-844.	3.6	82
70	Semi-inverse Method for Vibration and Buckling of Axially Functionally Graded Beams. Journal of Reinforced Plastics and Composites, 2008, 27, 683-691.	1.6	78
71	Three-Dimensional Vibration Analyses of Functionally Graded Plates under Various Boundary Conditions. Journal of Reinforced Plastics and Composites, 2007, 26, 1847-1863.	1.6	81
72	Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 2007, 28, 1651-1656.	5.1	423

#	Article	IF	CITATIONS
73	Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mechanica, 2007, 190, 185-195.	1.1	108
74	Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Composites Science and Technology, 2007, 67, 1096-1104.	3.8	112
75	Vibration of a variable cross-section beam. Mechanics Research Communications, 2007, 34, 78-84.	1.0	139
76	Buckling analysis of cross-ply laminated beams with general boundary conditions by Ritz method. Composites Science and Technology, 2006, 66, 1248-1255.	3.8	77
77	Buckling and vibration of non-ideal simply supported rectangular isotropic plates. Mechanics Research Communications, 2006, 33, 532-540.	1.0	12
78	Comparison of Various Shear Deformation Theories for Bending, Buckling, and Vibration of Rectangular Symmetric Cross-ply Plate with Simply Supported Edges. Journal of Composite Materials, 2006, 40, 2143-2155.	1.2	50
79	Free Vibration Analysis of Angle-ply Laminated Beams with General Boundary Conditions. Journal of Reinforced Plastics and Composites, 2006, 25, 1571-1583.	1.6	54
80	Vibration analysis of cross-ply laminated beams with general boundary conditions by Ritz method. International Journal of Mechanical Sciences, 2005, 47, 1740-1755.	3.6	109
81	Buckling of symmetric cross-ply square plates with various boundary conditions. Composite Structures, 2005, 68, 381-389.	3.1	24
82	Vibration analysis of cross-ply laminated square plates with general boundary conditions. Composites Science and Technology, 2003, 63, 1061-1070.	3.8	52
83	Buckling of Eccentrically Loaded Carbon Nanotubes. Solid State Phenomena, 0, 267, 151-156.	0.3	7
84	Dynamic Analysis of a Viscoelastic Nanobeam. Key Engineering Materials, 0, 799, 223-229.	0.4	2
85	Dynamics of nonlocal strain gradient nanobeams with longitudinal magnetic field. Mathematical Methods in the Applied Sciences, 0, , .	1.2	8
86	Longitudinal Vibration of Variable Cross-Sectional Nanorods. Journal of Nano Research, 0, 64, 49-60.	0.8	2