Eric M Gale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367916/publications.pdf Version: 2024-02-01

FRIC M GALE

#	Article	IF	CITATIONS
1	Enzyme Control Over Ferric Iron Magnetostructural Properties. Angewandte Chemie, 2022, 134, .	1.6	1
2	Enzyme Control Over Ferric Iron Magnetostructural Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
3	Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1483-1509.	2.3	9
4	Prediction of Gd(III) complex thermodynamic stability. Coordination Chemistry Reviews, 2022, 467, 214606.	9.5	9
5	Abstract 2454: Imaging pancreatic ductal adenocarcinoma using a zinc-sensitive MRI contrast agent: A novel method to detect early-stage PDAC lesions. Cancer Research, 2022, 82, 2454-2454.	0.4	0
6	Abstract 255: Peroxidasin deficiency recruits pro-healing macrophages into the liver and inhibits NAFLD progression to HCC. Cancer Research, 2022, 82, 255-255.	0.4	0
7	Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment. Journal of the American Chemical Society, 2021, 143, 15769-15783.	6.6	22
8	Positron Emission Tomography–Magnetic Resonance Imaging Pharmacokinetics, In Vivo Biodistribution, and Whole-Body Elimination of Mn-PyC3A. Investigative Radiology, 2021, 56, 261-270.	3.5	24
9	A novel tracer for in vivo optical imaging of fatty acid metabolism in the heart and brown adipose tissue. Scientific Reports, 2020, 10, 11209.	1.6	2
10	Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorganic Chemistry, 2020, 59, 17712-17721.	1.9	16
11	Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorganic Chemistry, 2020, 59, 6648-6678.	1.9	80
12	Molecular Magnetic Resonance Imaging Using a Redox-Active Iron Complex. Journal of the American Chemical Society, 2019, 141, 5916-5925.	6.6	96
13	Tumor Contrast Enhancement and Whole-Body Elimination of the Manganese-Based Magnetic Resonance Imaging Contrast Agent Mn-PyC3A. Investigative Radiology, 2019, 54, 697-703.	3.5	45
14	Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chemical Reviews, 2019, 119, 957-1057.	23.0	977
15	Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nature Communications, 2018, 9, 857.	5.8	64
16	Gadolinium-Free Contrast Agents for Magnetic Resonance Imaging of the Central Nervous System. ACS Chemical Neuroscience, 2018, 9, 395-397.	1.7	28
17	A Manganese-based Alternative to Gadolinium: Contrast-enhanced MR Angiography, Excretion, Pharmacokinetics, and Metabolism. Radiology, 2018, 286, 865-872.	3.6	87
18	Manganese-Based Contrast Agents for Magnetic Resonance Imaging of Liver Tumors: Structure–Activity Relationships and Lead Candidate Evaluation. Journal of Medicinal Chemistry, 2018, 61, 8811-8824.	2.9	72

Eric M Gale

#	Article	IF	CITATIONS
19	CM-101: Type I Collagen–targeted MR Imaging Probe for Detection of Liver Fibrosis. Radiology, 2018, 287, 581-589.	3.6	43
20	Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatric Radiology, 2017, 47, 507-521.	1.1	45
21	Steric Enforcement about One Thiolate Donor Leads to New Oxidation Chemistry in a NiSOD Model Complex. Inorganic Chemistry, 2017, 56, 7761-7780.	1.9	8
22	A Janus Chelator Enables Biochemically Responsive MRI Contrast with Exceptional Dynamic Range. Journal of the American Chemical Society, 2016, 138, 15861-15864.	6.6	59
23	MR imaging probes: design and applications. Dalton Transactions, 2015, 44, 4804-4818.	1.6	112
24	Accessing Ni(III)-Thiolate Versus Ni(II)-Thiyl Bonding in a Family of Ni–N ₂ S ₂ Synthetic Models of NiSOD. Inorganic Chemistry, 2015, 54, 3815-3828.	1.9	32
25	A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Chemical Society, 2015, 137, 15548-15557.	6.6	262
26	Hexameric Mn ^{II} Dendrimer as MRI Contrast Agent. Chemistry - A European Journal, 2014, 20, 14507-14513.	1.7	58
27	Structure–Redox–Relaxivity Relationships for Redox Responsive Manganese-Based Magnetic Resonance Imaging Probes. Inorganic Chemistry, 2014, 53, 10748-10761.	1.9	73
28	Direct Measurement of the Mn(II) Hydration State in Metal Complexes and Metalloproteins through ¹⁷ 0 NMR Line Widths. Journal of the American Chemical Society, 2013, 135, 18600-18608.	6.6	92
29	[Gd(CyPic3A)(H2O)2]â^: a stable, bis(aquated) and high-relaxivity Gd(iii) complex. Chemical Communications, 2013, 49, 8060.	2.2	40
30	Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology. Biochemistry, 2013, 52, 4-18.	1.2	52
31	Toward Functional Ni-SOD Biomimetics: Achieving a Structural/Electronic Correlation with Redox Dynamics. Inorganic Chemistry, 2011, 50, 9216-9218.	1.9	32
32	Dipeptide-Based Models of Nickel Superoxide Dismutase: Solvent Effects Highlight a Critical Role to Ni–S Bonding and Active Site Stabilization. Inorganic Chemistry, 2011, 50, 10460-10471.	1.9	35
33	Exploring the Effects of H-Bonding in Synthetic Analogues of Nickel Superoxide Dismutase (Ni-SOD): Experimental and Theoretical Implications for Protection of the Niâ^SCys Bond. Inorganic Chemistry, 2010, 49, 7080-7096.	1.9	43
34	Versatile Methodology Toward NiN ₂ S ₂ Complexes as Nickel Superoxide Dismutase Models: Structure and Proton Affinity. Inorganic Chemistry, 2009, 48, 5620-5622.	1.9	39