
Thomas A Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypervirulent (hypermucoviscous) <i>Klebsiella pneumoniae</i> . Virulence, 2013, 4, 107-118.	1.8	850
2	Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection, 2003, 5, 449-456.	1.0	649
3	Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 2019, 32, .	5.7	547
4	Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. Journal of Clinical Microbiology, 2018, 56, .	1.8	378
5	The K1 Capsular Polysaccharide of <i>Acinetobacter baumannii</i> Strain 307-0294 Is a Major Virulence Factor. Infection and Immunity, 2010, 78, 3993-4000.	1.0	271
6	Aerobactin Mediates Virulence and Accounts for Increased Siderophore Production under Iron-Limiting Conditions by Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae. Infection and Immunity, 2014, 82, 2356-2367.	1.0	198
7	Aerobactin, but Not Yersiniabactin, Salmochelin, or Enterobactin, Enables the Growth/Survival of Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae <i>Ex Vivo</i> and <i>In Vivo</i> . Infection and Immunity, 2015, 83, 3325-3333.	1.0	194
8	Active and Passive Immunization Protects against Lethal, Extreme Drug Resistant-Acinetobacter baumannii Infection. PLoS ONE, 2012, 7, e29446.	1.1	147
9	The K1 Capsular Polysaccharide from Acinetobacter baumannii Is a Potential Therapeutic Target via Passive Immunization. Infection and Immunity, 2013, 81, 915-922.	1.0	131
10	IroN Functions as a Siderophore Receptor and Is a Urovirulence Factor in an Extraintestinal Pathogenic Isolate of Escherichia coli. Infection and Immunity, 2002, 70, 7156-7160.	1.0	118
11	Hypervirulent K. Pneumoniae Secretes More and More Active Iron-Acquisition Molecules than "Classical―K. Pneumoniae Thereby Enhancing its Virulence. PLoS ONE, 2011, 6, e26734.	1.1	101
12	Penicillinâ€Binding Protein 7/8 Contributes to the Survival of <i>Acinetobacter baumannii</i> In Vitro and In Vivo. Journal of Infectious Diseases, 2009, 199, 513-521.	1.9	91
13	The Response Regulator BfmR Is a Potential Drug Target for Acinetobacter baumannii. MSphere, 2016, 1,	1.3	91
14	Identification of two previously unrecognized genes (guaAandargC) important for uropathogenesis. Molecular Microbiology, 1996, 22, 217-229.	1.2	86
15	Hypervirulent <i>Klebsiella pneumoniae:</i> the next superbug?. Future Microbiology, 2012, 7, 669-671.	1.0	85
16	Hypervirulent <i>Klebsiella pneumoniae</i> : a new public health threat. Expert Review of Anti-Infective Therapy, 2019, 17, 71-73.	2.0	76
17	E. colivirulence factor hemolysin induces neutrophil apoptosis and necrosis/lysis in vitro and necrosis/lysis and lung injury in a rat pneumonia model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L207-L216.	1.3	73
18	Monoclonal Antibody Protects Against Acinetobacter baumannii Infection by Enhancing Bacterial Clearance and Evading Sepsis. Journal of Infectious Diseases, 2017, 216, 489-501.	1.9	67

THOMAS A RUSSO

#	Article	IF	CITATIONS
19	Rat Pneumonia and Soft-Tissue Infection Models for the Study of <i>Acinetobacter baumannii</i> Biology. Infection and Immunity, 2008, 76, 3577-3586.	1.0	65
20	Hypervirulent <i>Klebsiella pneumoniae</i> is emerging as an increasingly prevalent <i>K. pneumoniae</i> pathotype responsible for nosocomial and healthcare-associated infections in Beijing, China. Virulence, 2020, 11, 1215-1224.	1.8	60
21	Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathogens, 2021, 17, e1009291.	2.1	59
22	Metabolite Transporter PEG344 Is Required for Full Virulence of Hypervirulent Klebsiella pneumoniae Strain hvKP1 after Pulmonary but Not Subcutaneous Challenge. Infection and Immunity, 2017, 85, .	1.0	57
23	Molecular Epidemiology of Extraintestinal Pathogenic <i>Escherichia coli</i> . EcoSal Plus, 2018, 8, .	2.1	57
24	Hypervirulent Klebsiella pneumoniae. Open Forum Infectious Diseases, 2014, 1, ofu028.	0.4	55
25	The Galleria mellonella Infection Model Does Not Accurately Differentiate between Hypervirulent and Classical Klebsiella pneumoniae. MSphere, 2020, 5, .	1.3	49
26	The Capsular Polysaccharide of Acinetobacter baumannii Is an Obstacle for Therapeutic Passive Immunization Strategies. Infection and Immunity, 2017, 85, .	1.0	47
27	Anatomy of an extensively drug-resistant <i>Klebsiella pneumoniae</i> outbreak in Tuscany, Italy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
28	Total extracellular surfactant is increased but abnormal in a rat model of gram-negative bacterial pneumonia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L655-L663.	1.3	34
29	Extraintestinal isolates ofEscherichia coli: identification and prospects for vaccine development. Expert Review of Vaccines, 2006, 5, 45-54.	2.0	31
30	A killed, genetically engineered derivative of a wild-type extraintestinal pathogenic E. coli strain is a vaccine candidate. Vaccine, 2007, 25, 3859-3870.	1.7	29
31	Getting hypervirulent Klebsiella pneumoniae on the radar screen. Current Opinion in Infectious Diseases, 2018, 31, 341-346.	1.3	28
32	An Assessment of Siderophore Production, Mucoviscosity, and Mouse Infection Models for Defining the Virulence Spectrum of Hypervirulent Klebsiella pneumoniae. MSphere, 2021, 6, .	1.3	28
33	Extraintestinal Pathogenic Escherichia coli Survives within Neutrophils. Infection and Immunity, 2007, 75, 2776-2785.	1.0	27
34	Polymyxin B in Combination with Rifampin and Meropenem against Polymyxin B-Resistant KPC-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	27
35	Aerobactin Synthesis Proteins as Antivirulence Targets in Hypervirulent <i>Klebsiella pneumoniae</i> . ACS Infectious Diseases, 2019, 5, 1052-1054.	1.8	20
36	Fact versus Fiction: a Review of the Evidence behind Alcohol and Antibiotic Interactions. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	20

THOMAS A RUSSO

#	Article	IF	CITATIONS
37	Draft Genome Sequence of the Hypervirulent Klebsiella pneumoniae Strain hvKP1, Isolated in Buffalo, New York. Genome Announcements, 2013, 1, e0006513.	0.8	19
38	Capsular polysaccharide and the O-specific antigen impede antibody binding: A potential obstacle for the successful development of an extraintestinal pathogenic Escherichia coli vaccine. Vaccine, 2009, 27, 388-395.	1.7	16
39	Antibody Dependent Enhancement of <i>Acinetobacter baumannii</i> Infection in a Mouse Pneumonia Model. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 475-489.	1.3	15
40	Human Neutrophil Chemotaxis Is Modulated by Capsule and O Antigen from an Extraintestinal Pathogenic Escherichia coli Strain. Infection and Immunity, 2003, 71, 6435-6445.	1.0	12
41	Fluorescent sensors of siderophores produced by bacterial pathogens. Journal of Biological Chemistry, 2022, 298, 101651.	1.6	12
42	Important Complexities of the Antivirulence Target Paradigm: A Novel Ostensibly Resistance-Avoiding Approach for Treating Infections: Table 1 Journal of Infectious Diseases, 2016, 213, 901-903.	1.9	11
43	Crystal structure of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase from the ESKAPE pathogen <i>Acinetobacter baumannii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 179-187.	0.4	11
44	An Evaluation of BfmR-Regulated Antimicrobial Resistance in the Extensively Drug Resistant (XDR) Acinetobacter baumannii Strain HUMC1. Frontiers in Microbiology, 2020, 11, 595798.	1.5	8
45	Structure of shikimate kinase, an <i>in vivo</i> essential metabolic enzyme in the nosocomial pathogen <i>Acinetobacter baumannii</i> , in complex with shikimate. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1736-1744.	2.5	7
46	Extraintestinal pathogenic isolates of <i>Escherichia coli</i> do not possess active IgA ₁ , IgA ₂ , sIgA or IgG proteases. FEMS Immunology and Medical Microbiology, 2008, 53, 65-71.	2.7	4
47	CAPSULE AND O-ANTIGEN FROM AN EXTRAINTESTINAL ISOLATE OF <i>ESHERICHIA COLI</i> MODULATE CYTOKINE LEVELS IN RAT MACROPHAGES IN VITRO AND IN A RAT MODEL OF PNEUMONIA. Experimental Lung Research, 2007, 33, 337-356.	0.5	3
48	Clinical Isolates of Acinetobacter spp. Are Highly Serum Resistant Despite Efficient Recognition by the Complement System. Frontiers in Immunology, 2022, 13, 814193.	2.2	3