
Carl Blair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367729/publications.pdf Version: 2024-02-01

CADI RIAID

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
5	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
6	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
7	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
8	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
9	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
10	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
11	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
12	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
13	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
14	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
15	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
16	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
17	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
18	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427

CARL BLAIR

#	Article	IF	CITATIONS
19	Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. Physical Review Letters, 2019, 123, 231107.	7.8	359
20	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
21	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
22	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
23	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
24	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
25	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
26	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
27	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
28	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
29	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
30	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
31	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
32	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
33	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
34	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
35	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
36	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77

CARL BLAIR

#	Article	IF	CITATIONS
37	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
38	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
39	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
40	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
41	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
42	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	12.6	59
43	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
44	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
45	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
46	Environmental noise in advanced LIGO detectors. Classical and Quantum Gravity, 2021, 38, 145001.	4.0	38
47	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
48	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
49	Gravitational wave detectors with broadband high frequency sensitivity. Communications Physics, 2021, 4, .	5.3	26
50	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
51	Point absorbers in Advanced LIGO. Applied Optics, 2021, 60, 4047.	1.8	24
52	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	23
53	Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Physical Review D, 2015, 91, .	4.7	20
54	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18

CARL BLAIR

#	Article	IF	CITATIONS
55	Analytical model for ring heater thermal compensation in the Advanced Laser Interferometer Gravitational-wave Observatory. Applied Optics, 2016, 55, 2619.	2.1	17
56	Quantum correlation measurements in interferometric gravitational-wave detectors. Physical Review A, 2017, 95, .	2.5	16
57	Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1970-1973.	2.1	9
58	Effects of transients in LIGO suspensions on searches for gravitational waves. Review of Scientific Instruments, 2017, 88, 124501.	1.3	6
59	Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.	1.3	4
60	Three mode interactions as a precision monitoring tool for advanced laser interferometers. Classical and Quantum Gravity, 2014, 31, 185003.	4.0	3
61	Constraining temperature distribution inside LIGO test masses from frequencies of their vibrational modes. Physical Review D, 2021, 103, .	4.7	2
62	Revealing optical loss from modal frequency degeneracy in a long optical cavity. Optics Express, 2021, 29, 23902.	3.4	2
63	Hartmann Wavefront Sensors for Advanced LIGO. , 2018, , .		1
64	Parametric instability in the neutron star extreme matter observatory. Classical and Quantum Gravity, 2022, 39, 085007.	4.0	1
65	The development of ground based gravitational wave astronomy and opportunities for Australia–China collaboration, International Journal of Modern Physics A, 2015, 30, 1545019	1.5	0