List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367721/publications.pdf Version: 2024-02-01

ΥΠΑΝΥΠΑΝ ΥΠ

#	Article	IF	CITATIONS
1	How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?. Water Research, 2019, 163, 114912.	5.3	124
2	Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting. Applied Surface Science, 2014, 301, 418-427.	3.1	69
3	Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohydrate Polymers, 2016, 137, 549-555.	5.1	56
4	Highly efficient and eco-friendly wool degradation by L-cysteine-assisted esperase. Journal of Cleaner Production, 2018, 192, 433-442.	4.6	54
5	Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohydrate Polymers, 2013, 95, 675-680.	5.1	51
6	Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS Applied Materials & Interfaces, 2021, 13, 43414-43425.	4.0	45
7	Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine. International Journal of Biological Macromolecules, 2015, 79, 353-362.	3.6	42
8	Ratio fluorometric determination of ATP base on the reversion of fluorescence of calcein quenched by Eu(III) ion using carbon dots as reference. Talanta, 2019, 197, 451-456.	2.9	38
9	Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. International Journal of Biological Macromolecules, 2020, 160, 795-805.	3.6	38
10	Enzymatic processing of protein-based fibers. Applied Microbiology and Biotechnology, 2015, 99, 10387-10397.	1.7	37
11	A facile strategy for the preparation of photothermal silk fibroin aerogels with antibacterial and oil-water separation abilities. Journal of Colloid and Interface Science, 2021, 603, 518-529.	5.0	34
12	Polymerization of dopamine catalyzed by laccase: Comparison of enzymatic and conventional methods. Enzyme and Microbial Technology, 2018, 119, 58-64.	1.6	33
13	Eco-friendly Grafting of Chitosan as a Biopolymer onto Wool Fabrics Using Horseradish Peroxidase. Fibers and Polymers, 2019, 20, 261-270.	1.1	32
14	Rapid Antibacterial Effects of Silk Fabric Constructed through Enzymatic Grafting of Modified PEI and AgNP Deposition. ACS Applied Materials & Interfaces, 2021, 13, 33505-33515.	4.0	30
15	HRP-mediated polyacrylamide graft modification of raw jute fabric. Journal of Molecular Catalysis B: Enzymatic, 2015, 116, 29-38.	1.8	27
16	Self-Crosslinking of Silk Fibroin Using H2O2-Horseradish Peroxidase System and the Characteristics of the Resulting Fibroin Membranes. Applied Biochemistry and Biotechnology, 2017, 182, 1548-1563.	1.4	27
17	Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior. Materials Science and Engineering C, 2017, 81, 291-302.	3.8	27
18	Covalent Immobilization of Cellulases onto a Water-Soluble–Insoluble Reversible Polymer. Applied Biochemistry and Biotechnology, 2012, 166, 1433-1441.	1.4	26

#	Article	IF	CITATIONS
19	A novel approach for grafting of β-cyclodextrin onto wool via laccase/TEMPO oxidation. Carbohydrate Polymers, 2016, 153, 463-470.	5.1	26
20	Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric. Fibers and Polymers, 2016, 17, 1613-1620.	1.1	26
21	Construction of a Rapid Photothermal Antibacterial Silk Fabric via QCS-Guided <i>In Situ</i> Deposition of CuSNPs. ACS Sustainable Chemistry and Engineering, 2022, 10, 2192-2203.	3.2	26
22	A novel "trifunctional protease―with reducibility, hydrolysis, and localization used for wool anti-felting treatment. Applied Microbiology and Biotechnology, 2018, 102, 9159-9170.	1.7	25
23	Laccase-catalyzed poly(ethylene glycol)-templated â€~zip' polymerization of caffeic acid for functionalization of wool fabrics. Journal of Cleaner Production, 2018, 191, 48-56.	4.6	24
24	Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial <i>Cinnamomum camphora</i> Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS Applied Materials & Interfaces, 2022, 14, 2132-2145.	4.0	24
25	The effect of branched limit dextrin on corn and waxy corn gelatinization and retrogradation. International Journal of Biological Macromolecules, 2018, 106, 116-122.	3.6	23
26	Modification of ramie with 1-butyl-3-methylimidazolium chloride ionic liquid. Fibers and Polymers, 2013, 14, 1254-1260.	1.1	21
27	Jute/polypropylene composites: Effect of enzymatic modification on thermo-mechanical and dynamic mechanical properties. Fibers and Polymers, 2015, 16, 2276-2283.	1.1	21
28	Green modification of cellulose-based natural materials by HRP-initiated controlled "graft from― polymerization. International Journal of Biological Macromolecules, 2020, 164, 1237-1245.	3.6	21
29	Durable hydrophobic and antibacterial textile coating via PDA/AgNPs/ODA in situ assembly. Cellulose, 2022, 29, 1175-1187.	2.4	21
30	Controlled graft polymerization on the surface of filter paper via enzyme-initiated RAFT polymerization. Carbohydrate Polymers, 2019, 207, 239-245.	5.1	20
31	Determination of thiourea based on the reversion of fluorescence quenching of nitrogen doped carbon dots by Hg2+. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117666.	2.0	20
32	Chitosan grafting via one-enzyme double catalysis: An effective approach for improving performance of wool. Carbohydrate Polymers, 2021, 252, 117157.	5.1	20
33	Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites. Applied Biochemistry and Biotechnology, 2016, 178, 1612-1629.	1.4	19
34	Mechanism and Analysis of Laccase-mediated Coloration of Silk Fabrics. Fibers and Polymers, 2018, 19, 868-876.	1.1	19
35	Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers. New Journal of Chemistry, 2017, 41, 3773-3780.	1.4	18
36	Enzymatic modification of jute fabrics for enhancing the reinforcement in jute/PP composites. Journal of Thermoplastic Composite Materials, 2018, 31, 483-499.	2.6	17

#	Article	IF	CITATIONS
37	Noncovalent immobilization of cellulases using the reversibly soluble polymers for biopolishing of cotton fabric. Biotechnology and Applied Biochemistry, 2015, 62, 494-501.	1.4	16
38	A novel strategy to improve the dyeing properties in laccaseâ€mediated coloration of wool fabric. Coloration Technology, 2017, 133, 65-72.	0.7	16
39	Changes on Content, Structure and Surface Distribution of Lignin in Jute Fibers After Laccase Treatment. Journal of Natural Fibers, 2018, 15, 384-395.	1.7	16
40	A Sustainable and Effective Bioprocessing Approach for Improving Anti-felting, Anti-pilling and Dyeing Properties of Wool Fabric. Fibers and Polymers, 2021, 22, 3045-3054.	1.1	16
41	Grafting of tyrosine-containing peptide onto silk fibroin membrane for improving enzymatic reactivity. Fibers and Polymers, 2016, 17, 1323-1329.	1.1	15
42	Acidic amino acids: A new-type of enzyme mimics with application to biosensing and evaluating of antioxidant behaviour. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 367-375.	2.0	15
43	Biological–chemical modification of cellulose nanocrystal to prepare highly compatible chitosan-based nanocomposites. Cellulose, 2019, 26, 5267-5279.	2.4	15
44	Development of an eco-friendly antibacterial textile: lysozyme immobilization on wool fabric. Bioprocess and Biosystems Engineering, 2020, 43, 1639-1648.	1.7	15
45	Pneumoconiosis computer aided diagnosis system based on X-rays and deep learning. BMC Medical Imaging, 2021, 21, 189.	1.4	15
46	OLE1 reduces cadmium-induced oxidative damage in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2018, 365, .	0.7	14
47	Determination of DNA based on fluorescence quenching of terbium doped carbon dots. Mikrochimica Acta, 2018, 185, 514.	2.5	14
48	Efficient Regulation of the Behaviors of Silk Fibroin Hydrogel via Enzyme-Catalyzed Coupling of Hyaluronic Acid. Langmuir, 2021, 37, 478-489.	1.6	14
49	Enzymeâ€mediated surface modification of jute and its influence on the properties of jute/epoxy composites. Polymer Composites, 2017, 38, 1327-1334.	2.3	13
50	Laccase-catalyzed polymerization of hydroquinone incorporated with chitosan oligosaccharide for enzymatic coloration of cotton. Applied Biochemistry and Biotechnology, 2020, 191, 605-622.	1.4	13
51	A controlled, highly effective and sustainable approach to the surface performance improvement of wool fibers. Journal of Molecular Liquids, 2021, 322, 114952.	2.3	13
52	"Graft to―Modification of Lignin by the Combination of Enzyme-Initiated Reversible Addition–Fragmentation Chain Transfer and Grafting. ACS Sustainable Chemistry and Engineering, 2019, 7, 12973-12980.	3.2	12
53	Oxysucrose polyaldehyde: A new hydrophilic crosslinking reagent for anti-crease finishing of cotton fabrics. Carbohydrate Research, 2019, 486, 107783.	1.1	12
54	Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling. International Journal of Biological Macromolecules, 2020, 144, 267-278.	3.6	12

#	Article	IF	CITATIONS
55	A Facile and Controllable Approach for Surface Modification of Wool by Micro-dissolution. Fibers and Polymers, 2020, 21, 1229-1237.	1.1	12
56	Construction of multifunctional UV-resistant, antibacterial and photothermal cotton fabric via silver/melanin-like nanoparticles. Cellulose, 2022, 29, 7477-7494.	2.4	12
57	Preparation of antibacterial silk fibroin membranes via tyrosinaseâ€catalyzed coupling of εâ€polylysine. Biotechnology and Applied Biochemistry, 2016, 63, 163-169.	1.4	11
58	Enhancement of antioxidant ability of Bombyx mori silk fibroins by enzymatic coupling of catechin. Applied Microbiology and Biotechnology, 2016, 100, 1713-1722.	1.7	11
59	Exploring the mechanism of pullulan delay potato starch long-term retrogradation from the viewpoint of amylopectin chain motion. International Journal of Biological Macromolecules, 2020, 145, 84-91.	3.6	11
60	Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose, 2022, 29, 2699-2709.	2.4	11
61	An innovative, low-cost and environment-friendly approach by using a deep eutectic solvent as the water substitute to minimize waste in the textile industry and for better clothing performance. Green Chemistry, 2022, 24, 5904-5917.	4.6	11
62	A study of surface morphology and structure of cotton fibres with soluble immobilized-cellulase treatment. Fibers and Polymers, 2014, 15, 1609-1615.	1.1	10
63	A facile and eco-friendly approach for preparation of microkeratin and nanokeratin by ultrasound-assisted enzymatic hydrolysis. Ultrasonics Sonochemistry, 2020, 68, 105201.	3.8	10
64	Enhancement reactivity of <i>Bombyx mori</i> silk fibroins via genipin-mediated grafting of a tyrosine-rich polypeptide. Journal of the Textile Institute, 2017, 108, 2115-2122.	1.0	9
65	Co-immobilization of cellulase and laccase onto the reversibly soluble polymers for decolorization of denim fabrics. Fibers and Polymers, 2017, 18, 993-999.	1.1	9
66	Construction of a composite hydrogel of silk sericin via horseradish peroxidaseâ€eatalyzed graft polymerization of polyâ€PEGDMA. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2643-2655.	1.6	9
67	Exploring the role of pullulan in the process of potato starch film formation. Carbohydrate Polymers, 2020, 234, 115910.	5.1	9
68	Thermo-responsive cotton fabric prepared by enzyme-initiated "graft from―polymerization for moisture/thermal management. Cellulose, 2021, 28, 1795-1808.	2.4	9
69	Photoenzymatic Activity of Artificial–Natural Bienzyme Applied in Biodegradation of Methylene Blue and Accelerating Polymerization of Dopamine. ACS Applied Materials & Interfaces, 2021, 13, 56191-56204.	4.0	9
70	Enzymatic coating of jute fabrics for enhancing anti-ultraviolent properties via in-situ polymerization of polyhydric phenols. Journal of Industrial Textiles, 2016, 46, 160-176.	1.1	8
71	Compressive Properties of High-distance Warp-knitted Spacer Flexible Composite. Fibers and Polymers, 2018, 19, 1135-1142.	1.1	8
72	HRP-mediated graft polymerization of acrylic acid onto silk fibroins and in situ biomimetic mineralization. Journal of Materials Science: Materials in Medicine, 2018, 29, 72.	1.7	8

#	Article	IF	CITATIONS
73	Laccase-catalyzed <i>in-situ</i> dyeing of wool fabric. Journal of the Textile Institute, 0, , 1-9.	1.0	7
74	Bio-Inspired Coloring and Functionalization of Silk Fabric via Laccase-Catalyzed Graft Polymerization of Arylamines. Fibers and Polymers, 2020, 21, 1927-1937.	1.1	7
75	Combined Cutinase and Keratinolytic Enzyme to Endow Improved Shrink-resistance to Wool Fabric. Fibers and Polymers, 2022, 23, 985-992.	1.1	7
76	Laccaseâ€catalyzed synthesis of conducting polyanilineâ€lignosulfonate composite. Journal of Applied Polymer Science, 2016, 133, .	1.3	6
77	Enzymatic crosslinking of silk sericin through combined use of TGase and the custom peptide. Journal of the Textile Institute, 2020, 111, 84-92.	1.0	6
78	A promising approach for bio-finishing of cotton using immobilized acid-cellulase. Fibers and Polymers, 2014, 15, 932-937.	1.1	5
79	Enzymatic deposition of PPy onto cPEG-grafted silk fibroin membrane to achieve conductivity. New Journal of Chemistry, 2020, 44, 7042-7050.	1.4	5
80	Enzymatic construction of a temperature-regulating fabric with multiple heat-transfer capabilities. Cellulose, 2022, 29, 3513-3528.	2.4	5
81	A new model substrate for cutinase hydrolyzing polyethylene terephthalate. Fibers and Polymers, 2013, 14, 1128-1133.	1.1	4
82	An eco-friendly approach to low-temperature and near-neutral bleaching of cotton knitted fabrics using glycerol triacetate as an activator. Cellulose, 2021, 28, 8129-8138.	2.4	4
83	pH Mediated L-cysteine Aqueous Solution for Wool Reduction and Urea-Free Keratin Extraction. Journal of Polymers and the Environment, 2022, 30, 2714-2726.	2.4	4
84	Can Thiourea Dioxide Regenerate Keratin from Waste Wool?. Journal of Natural Fibers, 2022, 19, 5991-5999.	1.7	3
85	Comparative Study of Water-soluble and Non-water-soluble Wool Keratin from Ionic Liquid Analogue. Fibers and Polymers, 2021, 22, 2965-2971.	1.1	3
86	Enhancing dye adsorption of wool by controlled and facile surface modification using sodium bisulphite. Coloration Technology, 2022, 138, 82-89.	0.7	3
87	Thiol-Based Ionic Liquid: An Efficient Approach for Improving Hydrophilic Performance of Wool. Journal of Natural Fibers, 2022, 19, 9729-9740.	1.7	3
88	Thiourea dioxide-mediated surface functionalization: A novel strategy for anti-felting and dyeability improvement of wool. Journal of the Textile Institute, 2022, 113, 2491-2501.	1.0	3
89	Characterization and performance of ramie fabrics treated with modified cellulase. Journal of the Textile Institute, 2015, 106, 780-786.	1.0	2
90	Poly(3,4-ethylenedioxythiophene)-Coated Conductive Polyester Non-woven Fabric Prepared by Enzymatic Polymerization. Fibers and Polymers, 0, , .	1.1	2

#	Article	IF	CITATIONS
91	Antibacterial Functionalization of Silk Fabrics following in Situ Coloring with Diazo Salts. Journal of Natural Fibers, 2021, 18, 1809-1822.	1.7	1
92	Separation and Enrichment of Sudan III Using Surface Modified Hollow Glass Microspheres and Colorimetric Detection. Journal of AOAC INTERNATIONAL, 2021, 104, 165-171.	0.7	1
93	Enhancing surface performance of wool using reduced ionic liquid. Journal of the Textile Institute, 2022, 113, 983-992.	1.0	1
94	Structure and Performance of Cuticles Isolated from Wool Fibers Using Different Approaches. Journal of Natural Fibers, 2022, 19, 7714-7727.	1.7	1
95	Enzymatic synthesis of sodium alginateâ€gâ€poly (acrylic acid) grafting copolymers as a novel printing thickener. Coloration Technology, 2022, 138, 278-290.	0.7	1
96	The Absorption Accelerating Behavior of Surface Modified Wool: Mechanism, Isotherm, Kinetic, and Thermodynamic Studies. Journal of Natural Fibers, 0, , 1-12.	1.7	0