Carmen J Marsit

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9367478/carmen-j-marsit-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 297
 16,964
 69
 120

 papers
 citations
 h-index
 g-index

 327
 19,898
 5.8
 6.71

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
297	Investigation of Prenatal Pesticide Exposure and Neurodevelopmental Deficits in Northern Thailand: Protocol for a Longitudinal Birth Cohort Study <i>JMIR Research Protocols</i> , 2022 , 11, e31696	2	O
296	Prenatal exposure to metal mixtures and newborn neurobehavior in the Rhode Island Child Health Study <i>Environmental Epidemiology</i> , 2022 , 6, e194	0.2	O
295	Placental genomics mediates genetic associations with complex health traits and disease <i>Nature Communications</i> , 2022 , 13, 706	17.4	О
294	High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort. <i>Environmental Pollution</i> , 2022 , 292, 118361	9.3	3
293	Association between placental toxic metal exposure and NICU Network Neurobehavioral Scales (NNNS) profiles in the Rhode Island Child Health Study (RICHS). <i>Environmental Research</i> , 2022 , 204, 1119	939	3
292	PM exposure during pregnancy is associated with altered placental expression of lipid metabolic genes in a US birth cohort <i>Environmental Research</i> , 2022 , 113066	7.9	О
291	Influence of Environmental Factors on the Epigenome 2022 , 277-322		
290	Exposure to Contemporary and Emerging Chemicals in Commerce among Pregnant Women in the United States: The Environmental influences on Child Health Outcome (ECHO) Program <i>Environmental Science & Environmental Science & </i>	10.3	1
289	Placental multi-omics integration identifies candidate functional genes for birthweight <i>Nature Communications</i> , 2022 , 13, 2384	17.4	1
288	Prenatal exposure to particulate matter and placental gene expression. <i>Environment International</i> , 2022 , 165, 107310	12.9	O
287	Selenium-associated differentially expressed microRNAs and their targeted mRNAs across the placental genome in two U.S. birth cohorts. <i>Epigenetics</i> , 2021 , 1-12	5.7	O
286	NEOage clocks - epigenetic clocks to estimate post-menstrual and postnatal age in preterm infants. <i>Aging</i> , 2021 , 13, 23527-23544	5.6	О
285	Urinary metals and maternal circulating extracellular vesicle microRNA in the MADRES pregnancy cohort. <i>Epigenetics</i> , 2021 , 1-15	5.7	3
284	Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. <i>Environment International</i> , 2021 , 158, 106964	12.9	8
283	Longitudinal changes in epigenetic age in youth with perinatally acquired HIV and youth who are perinatally HIV-exposed uninfected. <i>Aids</i> , 2021 , 35, 811-819	3.5	3
282	Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. <i>Epigenetics</i> , 2021 , 16, 770-782	5.7	4
281	Epigenome-wide analysis identifies genes and pathways linked to acoustic cry variation in preterm infants. <i>Pediatric Research</i> , 2021 , 89, 1848-1854	3.2	1

(2020-2021)

280	In-utero exposure to zidovudine-containing antiretroviral therapy and clonal hematopoiesis in HIV-exposed uninfected newborns. <i>Aids</i> , 2021 , 35, 1525-1535	3.5	1	
279	Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. <i>Epigenetics</i> , 2021 , 1-17	5.7	4	
278	Light Environment Influences Developmental Programming of the Metabolic and Visual Systems in Mice 2021 , 62, 22		2	
277	Extracellular vesicle-enriched miRNA profiles across pregnancy in the MADRES cohort. <i>PLoS ONE</i> , 2021 , 16, e0251259	3.7	3	
276	Epigenome-wide scan identifies differentially methylated regions for lung cancer using pre-diagnostic peripheral blood. <i>Epigenetics</i> , 2021 , 1-13	5.7	3	
275	DNA methylation in children with prenatal methamphetamine exposure and environmental adversity. <i>Pediatric Research</i> , 2021 , 89, 1152-1156	3.2	3	
274	Genome-wide DNA methylation differences and polychlorinated biphenyl (PCB) exposure in a US population. <i>Epigenetics</i> , 2021 , 16, 338-352	5.7	4	
273	Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. <i>Journal of Infectious Diseases</i> , 2021 , 224, 695-704	7		
272	Pre-diagnosis neutrophil-to-lymphocyte ratio and mortality in individuals who develop lung cancer. <i>Cancer Causes and Control</i> , 2021 , 32, 1227-1236	2.8	3	
271	Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. <i>Nature Communications</i> , 2021 , 12, 5095	17.4	5	
270	Placental gene networks at the interface between maternal PM exposure early in gestation and reduced infant birthweight. <i>Environmental Research</i> , 2021 , 199, 111342	7.9	4	
269	Developmental chronodisruption alters placental signaling in mice. <i>PLoS ONE</i> , 2021 , 16, e0255296	3.7	O	
268	A scalable workflow to characterize the human exposome. <i>Nature Communications</i> , 2021 , 12, 5575	17.4	6	
267	A Comprehensive Assessment of Associations between Prenatal Phthalate Exposure and the Placental Transcriptomic Landscape. <i>Environmental Health Perspectives</i> , 2021 , 129, 97003	8.4	2	
266	Prenatal risk factors and neonatal DNA methylation in very preterm infants. <i>Clinical Epigenetics</i> , 2021 , 13, 171	7.7	1	
265	Evidence for the placenta-brain axis: multi-omic kernel aggregation predicts intellectual and social impairment in children born extremely preterm. <i>Molecular Autism</i> , 2020 , 11, 97	6.5	6	
264	DNA Methylation-Derived Immune Cell Profiles, CpG Markers of Inflammation, and Pancreatic Cancer Risk. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2020 , 29, 1577-1585	4	7	
263	Placental lncRNA expression associated with placental cadmium concentrations and birth weight. <i>Environmental Epigenetics</i> , 2020 , 6, dvaa003	2.4	9	

262	Sex-specific DNA methylation differences in people exposed to polybrominated biphenyl. Epigenomics, 2020 , 12, 757-770	4.4	5
261	Identification of Let-7f-5p as a novel biomarker of recurrence in non-muscle invasive bladder cancer. <i>Cancer Biomarkers</i> , 2020 , 29, 101-110	3.8	5
260	Molecular markers of neuroendocrine function and mitochondrial biogenesis associated with early life stress. <i>Psychoneuroendocrinology</i> , 2020 , 116, 104632	5	6
259	Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. <i>Neurotoxicology and Teratology</i> , 2020 , 80, 10688	7 ^{3.9}	6
258	Epidemiological concepts in environmental epigenetics 2020 , 89-105		O
257	Selenium-associated DNA methylation modifications in placenta and neurobehavioral development of newborns: An epigenome-wide study of two U.S. birth cohorts. <i>Environment International</i> , 2020 , 137, 105508	12.9	8
256	Genome-wide characterization of cytosine-specific 5-hydroxymethylation in normal breast tissue. <i>Epigenetics</i> , 2020 , 15, 398-418	5.7	3
255	Epigenome-Wide Association Study Using Prediagnostic Bloods Identifies New Genomic Regions Associated With Pancreatic Cancer Risk. <i>JNCI Cancer Spectrum</i> , 2020 , 4, pkaa041	4.6	3
254	Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. <i>Clinical Epigenetics</i> , 2020 , 12, 151	7.7	7
253	Associations of maternal diet and placenta leptin methylation. <i>Molecular and Cellular Endocrinology</i> , 2020 , 505, 110739	4.4	5
252	Seasonally variant gene expression in full-term human placenta. <i>FASEB Journal</i> , 2020 , 34, 10431-10442	0.9	4
251	AHRR methylation in heavy smokers: associations with smoking, lung cancer risk, and lung cancer mortality. <i>BMC Cancer</i> , 2020 , 20, 905	4.8	7
250	In-depth characterization of the placental imprintome reveals novel differentially methylated regions across birth weight categories. <i>Epigenetics</i> , 2020 , 15, 47-60	5.7	5
249	Chrysotile fibers in tissue adjacent to laryngeal squamous cell carcinoma in cases with a history of occupational asbestos exposure. <i>Modern Pathology</i> , 2020 , 33, 228-234	9.8	2
248	Copper associates with differential methylation in placentae from two US birth cohorts. <i>Epigenetics</i> , 2020 , 15, 215-230	5.7	2
247	Mitochondrial and glycolysis-regulatory gene expression profiles are associated with intrauterine growth restriction. <i>Journal of Maternal-Fetal and Neonatal Medicine</i> , 2020 , 33, 1336-1345	2	5
246	Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. <i>Epigenetics</i> , 2019 , 14, 52-66	5.7	25
245	MicroRNA Dysregulation and Non-Muscle-Invasive Bladder Cancer Prognosis. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2019 , 28, 782-788	4	12

Epigenetically regulated imprinted gene expression associated with IVF and infertility; possible 244 influence of prenatal stress and depression. Journal of Assisted Reproduction and Genetics, 2019, 36, $129^{3-4}1313^4$ DNA methylation of NR3c1 in infancy: Associations between maternal caregiving and infant sex. 243 2.3 9 Infant Mental Health Journal, 2019, 40, 513-522 Exposure to polybrominated biphenyl and stochastic epigenetic mutations: application of a novel epigenetic approach to environmental exposure in the Michigan polybrominated biphenyl registry. 242 5.7 10 Epigenetics, 2019, 14, 1003-1018 A Neurodevelopmental Model of Combined Pyrethroid and Chronic Stress Exposure. Toxics, 2019, 241 4.7 Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. *Environmental Health Perspectives*, **2019**, 127, 57005 240 13 Epigenome-wide Analysis Identifies Genes and Pathways Linked to Neurobehavioral Variation in 239 22 4.9 Preterm Infants. Scientific Reports, 2019, 9, 6322 Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk 238 36.3 181 factors. Nature Genetics, 2019, 51, 804-814 Microorganisms in the Placenta: Links to Early-Life Inflammation and Neurodevelopment in 13 237 34 Children. Clinical Microbiology Reviews, 2019, 32, Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential 236 17.4 79 DNA methylation associated with birthweight. Nature Communications, 2019, 10, 1893 Maternal circadian disruption is associated with variation in placental DNA methylation. PLoS ONE, 235 3.7 9 **2019**, 14, e0215745 Prenatal arsenic exposure alters the placental expression of multiple epigenetic regulators in a 6 18 234 sex-dependent manner. Environmental Health, 2019, 18, 18 Placental imprinted gene expression mediates the effects of maternal psychosocial stress during 233 2.4 4 pregnancy on fetal growth. Journal of Developmental Origins of Health and Disease, 2019, 10, 196-205 Social Stress-Related Epigenetic Changes Associated With Increased Heart Rate Variability in 232 3.5 3 Infants. Frontiers in Behavioral Neuroscience, 2019, 13, 294 Associations Between the Features of Gross Placental Morphology and Birthweight. *Pediatric and* 8 2.2 231 Developmental Pathology, 2019, 22, 194-204 Accurate ethnicity prediction from placental DNA methylation data. Epigenetics and Chromatin, 5.8 230 20 2019, 12, 51 Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. 5.6 229 29 Aging, **2019**, 11, 4238-4253 Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of 228 5.6 7 biological aging. Aging, 2019, 11, 5498-5517 Associations Between Features of Placental Morphology and Birth Weight in Dichorionic Twins. 3.8 227 5 American Journal of Epidemiology, 2019, 188, 518-526

226	Transcriptome-wide analysis of changes in the fetal placenta associated with prenatal arsenic exposure in the New Hampshire Birth Cohort Study. <i>Environmental Health</i> , 2019 , 18, 100	6	8
225	Association between zidovudine-containing antiretroviral therapy exposure in utero and leukocyte telomere length at birth. <i>Aids</i> , 2019 , 33, 2091-2096	3.5	2
224	Smoking during pregnancy increases chemerin expression in neonatal tissue. <i>Experimental Physiology</i> , 2019 , 104, 93-99	2.4	2
223	Maternal swimming pool exposure during pregnancy in relation to birth outcomes and cord blood DNA methylation among private well users. <i>Environment International</i> , 2019 , 123, 459-466	12.9	5
222	Birthweight in infants conceived through in vitro fertilization following blastocyst or cleavage-stage embryo transfer: a national registry study. <i>Journal of Assisted Reproduction and Genetics</i> , 2018 , 35, 1027-1037	3.4	6
221	Epigenetic mechanisms in the placenta related to infant neurodevelopment. <i>Epigenomics</i> , 2018 , 10, 321	-4443	26
220	Effect of frozen/thawed embryo transfer on birthweight, Imacrosomia, and low birthweight rates in IDS in gleton infants. <i>American Journal of Obstetrics and Gynecology</i> , 2018 , 218, 433.e1-433.e10	6.4	34
219	Methylation-to-Expression Feature Models of Breast Cancer Accurately Predict Overall Survival, Distant-Recurrence Free Survival, and Pathologic Complete Response in Multiple Cohorts. <i>Scientific Reports</i> , 2018 , 8, 5190	4.9	5
218	Prenatal exposure to maternal depression and anxiety on imprinted gene expression in placenta and infant neurodevelopment and growth. <i>Pediatric Research</i> , 2018 , 83, 1075-1083	3.2	7
217	Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. <i>International Journal of Epidemiology</i> , 2018 , 47, 22-23u	7.8	62
216	Roadmap for investigating epigenome deregulation and environmental origins of cancer. <i>International Journal of Cancer</i> , 2018 , 142, 874-882	7.5	46
215	Comparison of diameter-based and image-based measures of surface area from gross placental pathology for use in epidemiologic studies. <i>Placenta</i> , 2018 , 69, 82-85	3.4	O
214	Integrating -Omics Approaches into Human Population-Based Studies of Prenatal and Early-Life Exposures. <i>Current Environmental Health Reports</i> , 2018 , 5, 328-337	6.5	16
213	Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005-2014. <i>Environmental Health</i> , 2018 , 17, 6	6	32
212	Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study. <i>Toxics</i> , 2018 , 6,	4.7	8
211	Pan-Cancer Analysis Reveals Differential Susceptibility of Bidirectional Gene Promoters to DNA Methylation, Somatic Mutations, and Copy Number Alterations. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	6
210	Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. <i>Environment International</i> , 2018 , 120, 373-381	12.9	28
209	Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. <i>PLoS Genetics</i> , 2018 , 14, e1007799	6	13

208	Epigenetic Programming by Maternal Behavior in the Human Infant. <i>Pediatrics</i> , 2018 , 142,	7.4	38
207	Methylation-derived Neutrophil-to-Lymphocyte Ratio and Lung Cancer Risk in Heavy Smokers. <i>Cancer Prevention Research</i> , 2018 , 11, 727-734	3.2	17
206	Variation in DNA methylation of human blood over a 1-year period using the Illumina MethylationEPIC array. <i>Epigenetics</i> , 2018 , 13, 1056-1071	5.7	20
205	Environmentally Induced Epigenetic Plasticity in Development: Epigenetic Toxicity and Epigenetic Adaptation. <i>Current Epidemiology Reports</i> , 2018 , 5, 450-460	2.9	4
204	Cadmium-Associated Differential Methylation throughout the Placental Genome: Epigenome-Wide Association Study of Two U.S. Birth Cohorts. <i>Environmental Health Perspectives</i> , 2018 , 126, 017010	8.4	50
203	Transdisciplinary approaches enhance the production of translational knowledge. <i>Translational Research</i> , 2017 , 182, 123-134	11	31
202	Using neonatal skin to study the developmental programming of aging. <i>Experimental Gerontology</i> , 2017 , 94, 93-98	4.5	3
201	Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. <i>Epigenomics</i> , 2017 , 9, 267-278	4.4	57
200	Placental imprinting variation associated with assisted reproductive technologies and subfertility. <i>Epigenetics</i> , 2017 , 12, 653-661	5.7	27
199	Pulmonary microRNA profiling: implications in upper lobe predominant lung disease. <i>Clinical Epigenetics</i> , 2017 , 9, 56	7.7	24
198	Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. <i>Epigenetics</i> , 2017 , 12, 607-615	5.7	41
197	Temporal variability of urinary cadmium in spot urine samples and first morning voids. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2017 , 27, 306-312	6.7	11
196	DNA Methylation-Derived Neutrophil-to-Lymphocyte Ratio: An Epigenetic Tool to Explore Cancer Inflammation and Outcomes. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2017 , 26, 328-338	4	40
195	Maternal ambient air pollution, preterm birth and markers of fetal growth in Rhode Island: results of a hospital-based linkage study. <i>Journal of Epidemiology and Community Health</i> , 2017 , 71, 1131-1136	5.1	22
194	Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children's Environmental Health Studies: The Children's Environmental Health and Disease Prevention Research Center's Epigenetics Working Group. <i>Environmental Health Perspectives</i> , 2017 , 125, 511-526	8.4	158
193	Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. <i>Human Molecular Genetics</i> , 2017 , 26, 4067-4085	5.6	151
192	Maternal residential air pollution and placental imprinted gene expression. <i>Environment International</i> , 2017 , 108, 204-211	12.9	20
191	Change in FK506 binding protein 5 (FKBP5) methylation over time among preschoolers with adversity. <i>Development and Psychopathology</i> , 2017 , 29, 1627-1634	4.3	58

190	Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers. <i>Development and Psychopathology</i> , 2017 , 29, 1619-1626	4.3	20
189	Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early development: The role of child maltreatment. <i>Development and Psychopathology</i> , 2017 , 29, 1635-1	1 <i>6</i> 438	32
188	Expression quantitative trait loci (eQTLs) in human placentas suggest developmental origins of complex diseases. <i>Human Molecular Genetics</i> , 2017 , 26, 3432-3441	5.6	29
187	Expression of placental regulatory genes is associated with fetal growth. <i>Journal of Perinatal Medicine</i> , 2017 , 45, 887-893	2.7	10
186	An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. <i>Translational Psychiatry</i> , 2017 , 7, e1158	8.6	63
185	Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. <i>Environmental Research</i> , 2017 , 158, 233-244	7.9	28
184	Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. <i>Environmental Health</i> , 2017 , 16, 50	6	41
183	The aquaglyceroporin AQP9 contributes to the sex-specific effects of in utero arsenic exposure on placental gene expression. <i>Environmental Health</i> , 2017 , 16, 59	6	12
182	Medical morbidities and DNA methylation of NR3C1 in preterm infants. <i>Pediatric Research</i> , 2017 , 81, 68-74	3.2	13
181	A METHYLATION-TO-EXPRESSION FEATURE MODEL FOR GENERATING ACCURATE PROGNOSTIC RISK SCORES AND IDENTIFYING DISEASE TARGETS IN CLEAR CELL KIDNEY CANCER. <i>Pacific Symposium on Biocomputing</i> , 2017 , 22, 509-520	1.3	4
180	Whole-transcriptome analysis delineates the human placenta gene network and its associations with fetal growth. <i>BMC Genomics</i> , 2017 , 18, 520	4.5	34
179	Maternal cadmium, placental PCDHAC1, and fetal development. <i>Reproductive Toxicology</i> , 2016 , 65, 263-	-23741	21
178	Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links With Internalizing Behavior Problems. <i>Child Development</i> , 2016 , 87, 86-97	4.9	45
177	Placental Epigenetics in Children's Environmental Health. <i>Seminars in Reproductive Medicine</i> , 2016 , 34, 36-41	1.4	20
176	Placental Metal Concentrations in Relation to Maternal and Infant Toenails in a U.S. Cohort. <i>Environmental Science & Environmental Science & Environm</i>	10.3	37
175	Seroepidemiology of Human Polyomaviruses in a US Population. <i>American Journal of Epidemiology</i> , 2016 , 183, 61-9	3.8	83
174	Epigenome-Wide Assessment of DNA Methylation in the Placenta and Arsenic Exposure in the New Hampshire Birth Cohort Study (USA). <i>Environmental Health Perspectives</i> , 2016 , 124, 1253-60	8.4	75
173	Prenatal Stress, Fearfulness, and the Epigenome: Exploratory Analysis of Sex Differences in DNA Methylation of the Glucocorticoid Receptor Gene. <i>Frontiers in Behavioral Neuroscience</i> , 2016 , 10, 147	3.5	51

(2015-2016)

172	Methylation of the Glucocorticoid Receptor (NR3C1) in Placenta Is Associated with Infant Cry Acoustics. <i>Frontiers in Behavioral Neuroscience</i> , 2016 , 10, 100	3.5	12
171	Maternal smoking during pregnancy is associated with mitochondrial DNA methylation. <i>Environmental Epigenetics</i> , 2016 , 2,	2.4	16
170	Prenatal Programming of Infant Neurobehaviour in a Healthy Population. <i>Paediatric and Perinatal Epidemiology</i> , 2016 , 30, 367-75	2.7	23
169	Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders. <i>Translational Psychiatry</i> , 2016 , 6, e848	8.6	79
168	Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. <i>Epigenetics</i> , 2016 , 11, 603-13	5.7	64
167	Prenatal Major Depressive Disorder, Placenta Glucocorticoid and Serotonergic Signaling, and Infant Cortisol Response. <i>Psychosomatic Medicine</i> , 2016 , 78, 979-990	3.7	47
166	Reference-free deconvolution of DNA methylation data and mediation by cell composition effects. <i>BMC Bioinformatics</i> , 2016 , 17, 259	3.6	134
165	Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. <i>Environment International</i> , 2016 , 92-93, 43-9	12.9	44
164	Hydroxymethylation is uniquely distributed within term placenta, and is associated with gene expression. <i>FASEB Journal</i> , 2016 , 30, 2874-84	0.9	28
163	Epigenetic Regulation of Placental NR3C1: Mechanism Underlying Prenatal Programming of Infant Neurobehavior by Maternal Smoking?. <i>Child Development</i> , 2016 , 87, 49-60	4.9	34
162	Introduction to the Special Section on Epigenetics. Child Development, 2016, 87, 29-37	4.9	50
161	The Contributions of Maternal Sensitivity and Maternal Depressive Symptoms to Epigenetic Processes and Neuroendocrine Functioning. <i>Child Development</i> , 2016 , 87, 73-85	4.9	59
160	Influence of environmental exposure on human epigenetic regulation. <i>Journal of Experimental Biology</i> , 2015 , 218, 71-9	3	153
159	Placental expression profile of imprinted genes impacts birth weight. <i>Epigenetics</i> , 2015 , 10, 842-9	5.7	68
158	Expression of imprinted genes in placenta is associated with infant neurobehavioral development. <i>Epigenetics</i> , 2015 , 10, 834-41	5.7	41
157	The Role of Placental 11-Beta Hydroxysteroid Dehydrogenase Type 1 and Type 2 Methylation on Gene Expression and Infant Birth Weight. <i>Biology of Reproduction</i> , 2015 , 92, 149	3.9	29
156	Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues. <i>Current Environmental Health Reports</i> , 2015 , 2, 126-36	6.5	31
155	Cell-composition effects in the analysis of DNA methylation array data: a mathematical perspective. <i>BMC Bioinformatics</i> , 2015 , 16, 95	3.6	68

154	DNA methylation changes in the placenta are associated with fetal manganese exposure. <i>Reproductive Toxicology</i> , 2015 , 57, 43-9	3.4	30
153	Methylation of exons 1D, 1F, and 1H of the glucocorticoid receptor gene promoter and exposure to adversity in preschool-aged children. <i>Development and Psychopathology</i> , 2015 , 27, 577-85	4.3	46
152	Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2015 , 25, 599-603	6.7	34
151	Understanding the Role of the Immune System in the Development of Cancer: New Opportunities for Population-Based Research. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2015 , 24, 1811-9	4	15
150	Infant peripheral blood repetitive element hypomethylation associated with antiretroviral therapy in utero. <i>Epigenetics</i> , 2015 , 10, 708-16	5.7	14
149	E2F4 Program Is Predictive of Progression and Intravesical Immunotherapy Efficacy in Bladder Cancer. <i>Molecular Cancer Research</i> , 2015 , 13, 1316-24	6.6	9
148	Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. <i>Epigenetics</i> , 2015 , 10, 508-15	5.7	91
147	Placental epigenetic patterning of glucocorticoid response genes is associated with infant neurodevelopment. <i>Epigenomics</i> , 2015 , 7, 767-79	4.4	46
146	Association between maternal urinary arsenic species and infant cord blood leptin levels in a New Hampshire Pregnancy Cohort. <i>Environmental Research</i> , 2015 , 136, 180-6	7.9	22
145	Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. <i>Psychoneuroendocrinology</i> , 2015 , 52, 32-42	5	45
144	Obesity and head and neck cancer risk and survival by human papillomavirus serology. <i>Cancer Causes and Control</i> , 2015 , 26, 111-9	2.8	10
143	Genetic polymorphisms modify bladder cancer recurrence and survival in a USA population-based prognostic study. <i>BJU International</i> , 2015 , 115, 238-47	5.6	22
142	Childhood maltreatment and methylation of FK506 binding protein 5 gene (FKBP5). <i>Development and Psychopathology</i> , 2015 , 27, 1637-45	4.3	65
141	Neurobehavior related to epigenetic differences in preterm infants. <i>Epigenomics</i> , 2015 , 7, 1123-36	4.4	59
140	Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex. <i>Clinical Epigenetics</i> , 2015 , 7, 79	7.7	54
139	MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. <i>Molecular Cancer</i> , 2015 , 14, 194	42.1	119
138	Prenatal predictors of infant self-regulation: the contributions of placental DNA methylation of NR3C1 and neuroendocrine activity. <i>Frontiers in Behavioral Neuroscience</i> , 2015 , 9, 130	3.5	43
137	A coding variant in TMC8 (EVER2) is associated with high risk HPV infection and head and neck cancer risk. <i>PLoS ONE</i> , 2015 , 10, e0123716	3.7	6

136	Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes. <i>Environmental Health Perspectives</i> , 2015 , 123, 723-9	8.4	62
135	Maternal psychiatric disease and epigenetic evidence suggest a common biology for poor fetal growth. <i>BMC Pregnancy and Childbirth</i> , 2015 , 15, 192	3.2	34
134	GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth. EBioMedicine, 2015, 2, 536-43	8.8	12
133	Expression of tumor suppressive microRNA-34a is associated with a reduced risk of bladder cancer recurrence. <i>International Journal of Cancer</i> , 2015 , 137, 1158-66	7.5	30
132	Sex-specific associations between placental leptin promoter DNA methylation and infant neurobehavior. <i>Psychoneuroendocrinology</i> , 2014 , 40, 1-9	5	46
131	Epigenetic Regulation of Infant Neurobehavioral Outcomes. <i>Medical Epigenetics</i> , 2014 , 2, 71-79		31
130	Global and gene-specific DNA methylation across multiple tissues in early infancy: implications for childrens health research. <i>FASEB Journal</i> , 2014 , 28, 2088-97	0.9	62
129	Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. <i>American Journal of Obstetrics and Gynecology</i> , 2014 , 211, 654.e1-9	6.4	69
128	Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis. <i>Psychoneuroendocrinology</i> , 2014 , 48, 29-40	5	78
127	Leukocyte-adjusted epigenome-wide association studies of blood from solid tumor patients. <i>Epigenetics</i> , 2014 , 9, 884-95	5.7	29
126	A novel approach to the discovery of survival biomarkers in glioblastoma using a joint analysis of DNA methylation and gene expression. <i>Epigenetics</i> , 2014 , 9, 873-83	5.7	22
125	Infant toenails as a biomarker of in utero arsenic exposure. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2014 , 24, 467-73	6.7	37
124	Body mass and smoking are modifiable risk factors for recurrent bladder cancer. <i>Cancer</i> , 2014 , 120, 408	-1644	56
123	The developmental basis of epigenetic regulation of HTR2A and psychiatric outcomes. <i>Journal of Cellular Biochemistry</i> , 2014 , 115, 2065-72	4.7	29
122	Reference-free cell mixture adjustments in analysis of DNA methylation data. <i>Bioinformatics</i> , 2014 , 30, 1431-9	7.2	316
121	Are epigenetic changes in the intrauterine environment related to newborn neurobehavior?. <i>Epigenomics</i> , 2014 , 6, 175-8	4.4	19
120	Distinct patterns of DNA methylation in conventional adenomas involving the right and left colon. <i>Modern Pathology</i> , 2014 , 27, 145-55	9.8	32
119	Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. <i>PLoS ONE</i> , 2014 , 9, e104913	3.7	81

118	A recursively partitioned mixture model for clustering time-course gene expression data. <i>Translational Cancer Research</i> , 2014 , 3, 217-232	0.3	3
117	Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2013 , 22, 1061-8	4	51
116	Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. <i>Epigenomics</i> , 2013 , 5, 619-30	4.4	83
115	Association between In Utero arsenic exposure, placental gene expression, and infant birth weight: a US birth cohort study. <i>Environmental Health</i> , 2013 , 12, 58	6	55
114	Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. <i>Molecular and Cellular Endocrinology</i> , 2013 , 381, 160-7	4.4	77
113	Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. <i>Developmental Psychobiology</i> , 2013 , 55, 673-83	3	83
112	Blood-derived DNA methylation markers of cancer risk. <i>Advances in Experimental Medicine and Biology</i> , 2013 , 754, 233-52	3.6	24
111	Recursively partitioned mixture model clustering of DNA methylation data using biologically informed correlation structures. <i>Statistical Applications in Genetics and Molecular Biology</i> , 2013 , 12, 225	-40 ²	11
110	Placental miRNA expression profiles are associated with measures of infant neurobehavioral outcomes. <i>Pediatric Research</i> , 2013 , 74, 272-8	3.2	31
109	Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. <i>Environmental Health Perspectives</i> , 2013 , 121, 971-7	8.4	147
108	Epigenetic basis for the development of depression in children. <i>Clinical Obstetrics and Gynecology</i> , 2013 , 56, 556-65	1.7	36
107	Placental HTR2A methylation is associated with infant neurobehavioral outcomes. <i>Epigenetics</i> , 2013 , 8, 796-801	5.7	49
106	Blood-based profiles of DNA methylation predict the underlying distribution of cell types: a validation analysis. <i>Epigenetics</i> , 2013 , 8, 816-26	5.7	174
105	The roles of DNA methylation of NR3C1hand 11HSD2hand exposure to maternal mood disorder in utero on newborn neurobehavior. <i>Epigenetics</i> , 2013 , 8, 1321-9	5.7	212
104	Developmental genes targeted for epigenetic variation between twin-twin transfusion syndrome children. <i>Clinical Epigenetics</i> , 2013 , 5, 18	7.7	5
103	Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. <i>PLoS ONE</i> , 2013 , 8, e74691	3.7	109
102	Placenta-imprinted gene expression association of infant neurobehavior. <i>Journal of Pediatrics</i> , 2012 , 160, 854-860.e2	3.6	34
101	LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese. International Journal of Cancer, 2012, 130, 1151-9	7.5	71

(2011-2012)

100	SLC39A2 and FSIP1 polymorphisms as potential modifiers of arsenic-related bladder cancer. <i>Human Genetics</i> , 2012 , 131, 453-61	6.3	32
99	A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. <i>Toxicology Letters</i> , 2012 , 210, 100-6	4.4	53
98	Identification of an epigenetic profile classifier that is associated with survival in head and neck cancer. <i>Cancer Research</i> , 2012 , 72, 2728-37	10.1	33
97	DNA methylation arrays as surrogate measures of cell mixture distribution. <i>BMC Bioinformatics</i> , 2012 , 13, 86	3.6	1815
96	Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. <i>PLoS ONE</i> , 2012 , 7, e30148	3.7	360
95	HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer. <i>PLoS ONE</i> , 2012 , 7, e51301	3.7	14
94	Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. <i>Epigenetics</i> , 2012 , 7, 291-9	5.7	69
93	In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. <i>Environmental Health Perspectives</i> , 2012 , 120, 296-3	o ^{8.4}	150
92	Gene-environment interactions of novel variants associated with head and neck cancer. <i>Head and Neck</i> , 2012 , 34, 1111-8	4.2	18
91	Allergies and risk of head and neck cancer. Cancer Causes and Control, 2012, 23, 1317-22	2.8	14
90	Key epigenetic changes associated with lung cancer development: results from dense methylation array profiling. <i>Epigenetics</i> , 2012 , 7, 559-66	5.7	37
89	Biomarkers of HPV in head and neck squamous cell carcinoma. <i>Cancer Research</i> , 2012 , 72, 5004-13	10.1	103
88	Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2012 , 21, 1293-302	4	94
87	Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. <i>PLoS ONE</i> , 2012 , 7, e33794	3.7	144
86	Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. <i>PLoS ONE</i> , 2012 , 7, e53003	3.7	45
85	Influence of Environmental Factors on the Epigenome 2012 , 197-224		1
84	Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. <i>Frontiers in Bioscience - Elite</i> , 2011 , 3, 690-700	1.6	57
83	Global methylation in exposure biology and translational medical science. <i>Environmental Health Perspectives</i> , 2011 , 119, 1528-33	8.4	84

82	Epigenomics in environmental health. Frontiers in Genetics, 2011, 2, 84	4.5	90
81	A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE consortium. <i>PLoS Genetics</i> , 2011 , 7, e1001333	6	136
80	Behavioral epigenetics. Annals of the New York Academy of Sciences, 2011, 1226, 14-33	6.5	101
79	Association of secondhand smoke exposures with DNA methylation in bladder carcinomas. <i>Cancer Causes and Control</i> , 2011 , 22, 1205-13	2.8	30
78	A novel survival multifactor dimensionality reduction method for detecting gene-gene interactions with application to bladder cancer prognosis. <i>Human Genetics</i> , 2011 , 129, 101-10	6.3	46
77	Exposure and fetal growth-associated miRNA alterations in the human placenta. <i>Clinical Epigenetics</i> , 2011 , 2, 401-4	7.7	19
76	History of Parvovirus B19 infection is associated with a DNA methylation signature in childhood acute lymphoblastic leukemia. <i>Epigenetics</i> , 2011 , 6, 1436-43	5.7	16
75	DNA hypermethylation profiles associated with glioma subtypes and EZH2 and IGFBP2 mRNA expression. <i>Neuro-Oncology</i> , 2011 , 13, 280-9	1	54
74	The relationship between tumor MSLN methylation and serum mesothelin (SMRP) in mesothelioma. <i>Epigenetics</i> , 2011 , 6, 1029-34	5.7	21
73	Cardiovascular disease risk factors and DNA methylation at the LINE-1 repeat region in peripheral blood from Samoan Islanders. <i>Epigenetics</i> , 2011 , 6, 1257-64	5.7	78
72	DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. <i>Journal of the National Cancer Institute</i> , 2011 , 103, 143-53	9.7	194
71	DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. <i>Journal of Clinical Oncology</i> , 2011 , 29, 1133-9	2.2	105
70	Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas. <i>Epigenetics</i> , 2011 , 6, 920-7	5.7	119
69	Global hypomethylation identifies Loci targeted for hypermethylation in head and neck cancer. <i>Clinical Cancer Research</i> , 2011 , 17, 3579-89	12.9	68
68	Polycomb group genes are targets of aberrant DNA methylation in renal cell carcinoma. <i>Epigenetics</i> , 2011 , 6, 703-9	5.7	23
67	The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. <i>Epigenetics</i> , 2011 , 6, 908-19	5.7	51
66	Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. <i>Epigenetics</i> , 2011 , 6, 566-72	5.7	135
65	Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. <i>PLoS ONE</i> , 2011 , 6, e20280	3.7	96

64	miR-16 and miR-21 expression in the placenta is associated with fetal growth. <i>PLoS ONE</i> , 2011 , 6, e2121	1 3 .7	104
63	Mature microRNA sequence polymorphism in MIR196A2 is associated with risk and prognosis of head and neck cancer. <i>Clinical Cancer Research</i> , 2010 , 16, 3713-20	12.9	109
62	Implications of LINE1 methylation for bladder cancer risk in women. <i>Clinical Cancer Research</i> , 2010 , 16, 1682-9	12.9	138
61	Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. <i>Bioinformatics</i> , 2010 , 26, 2578-85	7.2	77
60	Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. <i>Epigenetics</i> , 2010 , 5, 583-9	5.7	164
59	Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. <i>Cancer Research</i> , 2010 , 70, 5686-94	10.1	49
58	Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. <i>PLoS Genetics</i> , 2010 , 6, e1001043	6	128
57	Arsenic exposure predicts bladder cancer survival in a US population. <i>World Journal of Urology</i> , 2010 , 28, 487-92	4	13
56	Bisphenol A exposure leads to specific microRNA alterations in placental cells. <i>Reproductive Toxicology</i> , 2010 , 29, 401-6	3.4	214
55	Downregulated microRNAs in the differential diagnosis of malignant pleural mesothelioma. <i>International Journal of Cancer</i> , 2010 , 127, 2859-69	7.5	82
54	Genetic and epigenetic somatic alterations in head and neck squamous cell carcinomas are globally coordinated but not locally targeted. <i>PLoS ONE</i> , 2010 , 5, e9651	3.7	31
53	Identification of methylated genes associated with aggressive bladder cancer. <i>PLoS ONE</i> , 2010 , 5, e123	3 4 .7	71
52	A let-7 microRNA-binding site polymorphism in the KRAS 3SUTR is associated with reduced survival in oral cancers. <i>Carcinogenesis</i> , 2009 , 30, 1003-7	4.6	171
51	Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. <i>Cancer Research</i> , 2009 , 69, 6315-21	10.1	62
50	Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. <i>Carcinogenesis</i> , 2009 , 30, 977-81	4.6	49
49	MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. <i>Clinical Cancer Research</i> , 2009 , 15, 2850-5	12.9	215
48	Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. <i>Cancer Research</i> , 2009 , 69, 227-34	10.1	128
47	Copy number variation has little impact on bead-array-based measures of DNA methylation. <i>Bioinformatics</i> , 2009 , 25, 1999-2005	7.2	32

46	EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. <i>Carcinogenesis</i> , 2009 , 30, 1155-60	4.6	36
45	Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. <i>Carcinogenesis</i> , 2009 , 30, 416-22	4.6	93
44	Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. <i>PLoS Genetics</i> , 2009 , 5, e1000602	6	773
43	A case-control study of smoking and bladder cancer risk: emergent patterns over time. <i>Journal of the National Cancer Institute</i> , 2009 , 101, 1553-61	9.7	128
42	Smoking modifies the relationship between XRCC1 haplotypes and HPV16-negative head and neck squamous cell carcinoma. <i>International Journal of Cancer</i> , 2009 , 124, 2690-6	7.5	28
41	Bladder cancer SNP panel predicts susceptibility and survival. <i>Human Genetics</i> , 2009 , 125, 527-39	6.3	72
40	Epigenetics in the placenta. American Journal of Reproductive Immunology, 2009, 62, 78-89	3.8	157
39	A population-based case-control study of marijuana use and head and neck squamous cell carcinoma. <i>Cancer Prevention Research</i> , 2009 , 2, 759-68	3.2	52
38	DNA repair genotype interacts with arsenic exposure to increase bladder cancer risk. <i>Toxicology Letters</i> , 2009 , 187, 10-4	4.4	33
37	MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. <i>Carcinogenesis</i> , 2009 , 30, 2059-63	4.6	123
36	Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. <i>BMC Bioinformatics</i> , 2008 , 9, 365	3.6	152
35	Genetic and epigenetic tumor suppressor gene silencing are distinct molecular phenotypes driven by growth promoting mutations in nonsmall cell lung cancer. <i>Journal of Cancer Epidemiology</i> , 2008 , 2008, 215809	2.8	3
34	A genotype-phenotype examination of cyclin D1 on risk and outcome of squamous cell carcinoma of the head and neck. <i>Clinical Cancer Research</i> , 2008 , 14, 2371-7	12.9	23
33	Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. <i>Carcinogenesis</i> , 2008 , 29, 1555-9	4.6	74
32	Human papillomavirus-16 modifies the association between fruit consumption and head and neck squamous cell carcinoma. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2008 , 17, 3419-26	4	16
31	Chromosome 12p deletions in TEL-AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally. <i>Cancer Research</i> , 2008 , 68, 9935-44	10.1	20
30	Histological classification and stage of newly diagnosed bladder cancer in a population-based study from the Northeastern United States. <i>Scandinavian Journal of Urology and Nephrology</i> , 2008 , 42, 237-42		33
29	Line region hypomethylation is associated with lifestyle and differs by human papillomavirus status in head and neck squamous cell carcinomas. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2008 , 17, 966-71	4	45

28	Asbestos burden predicts survival in pleural mesothelioma. <i>Environmental Health Perspectives</i> , 2008 , 116, 723-6	8.4	22
27	Hypermethylation of E-cadherin is an independent predictor of improved survival in head and neck squamous cell carcinoma. <i>Cancer</i> , 2008 , 113, 1566-71	6.4	49
26	Dairy products, leanness, and head and neck squamous cell carcinoma. <i>Head and Neck</i> , 2008 , 30, 1193-20	045.2	20
25	Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2007 , 16, 108-14	4	256
24	Penalized item response theory models: application to epigenetic alterations in bladder cancer. <i>Biometrics</i> , 2007 , 63, 1269-77	1.8	9
23	Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. <i>Cancer Research</i> , 2007 , 67, 4605-19	10.1	351
22	Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. <i>Carcinogenesis</i> , 2007 , 28, 1745-51	4.6	68
21	Survival following the diagnosis of noninvasive bladder cancer: WHO/International Society of Urological Pathology versus WHO classification systems. <i>Journal of Urology</i> , 2007 , 178, 1196-200; discussion 1200	2.5	31
20	Epigenetic inactivation of the SFRP genes is associated with drinking, smoking and HPV in head and neck squamous cell carcinoma. <i>International Journal of Cancer</i> , 2006 , 119, 1761-6	7.5	101
19	Glutathione S-transferase polymorphisms and the synergy of alcohol and tobacco in oral, pharyngeal, and laryngeal carcinoma. <i>Cancer Epidemiology Biomarkers and Prevention</i> , 2006 , 15, 2196-20	2	64
18	Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. <i>Cancer Research</i> , 2006 , 66, 10621-9	10.1	85
17	MicroRNA responses to cellular stress. <i>Cancer Research</i> , 2006 , 66, 10843-8	10.1	343
16	Carcinogen exposure and epigenetic silencing in bladder cancer. <i>Annals of the New York Academy of Sciences</i> , 2006 , 1076, 810-21	6.5	44
15	Carcinogen exposure and gene promoter hypermethylation in bladder cancer. <i>Carcinogenesis</i> , 2006 , 27, 112-6	4.6	139
14	PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. <i>Human Pathology</i> , 2005 , 36, 768-76	3.7	209
13	Alterations of 9p in squamous cell carcinoma and adenocarcinoma of the lung: association with smoking, TP53, and survival. <i>Cancer Genetics and Cytogenetics</i> , 2005 , 162, 115-21		12
12	Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. <i>International Journal of Cancer</i> , 2005 , 114, 219-23	7.5	54
11	Loss of heterozygosity on chromosome 9q and p53 alterations in human bladder cancer. <i>Cancer</i> , 2005 , 104, 1918-23	6.4	26

10	Epigenetic silencing of the PRSS3 putative tumor suppressor gene in non-small cell lung cancer. <i>Molecular Carcinogenesis</i> , 2005 , 44, 146-50	5	24
9	The race associated allele of Semaphorin 3B (SEMA3B) T415I and its role in lung cancer in African-Americans and Latino-Americans. <i>Carcinogenesis</i> , 2005 , 26, 1446-9	4.6	15
8	TP53 mutation, allelism and survival in non-small cell lung cancer. <i>Carcinogenesis</i> , 2005 , 26, 1770-3	4.6	53
7	Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. <i>Cancer Research</i> , 2005 , 65, 7081-5	10.1	120
6	Loss of heterozygosity of chromosome 3p21 is associated with mutant TP53 and better patient survival in non-small-cell lung cancer. <i>Cancer Research</i> , 2004 , 64, 8702-7	10.1	42
5	Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. <i>Oncogene</i> , 2004 , 23, 1000-4	9.2	196
4	Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the Pregnancy and Childhood Epigenetics (PACE) consortium		1
3	Cadmium-associated differential methylation throughout the placental genome: epigenome-wide association study of two US birth cohorts		1
2	Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth		3
1	Reference-free deconvolution of DNA methylation data and mediation by cell composition effects		1