Alessandro Corsaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N6-Isopentenyladenosine Hinders the Vasculogenic Mimicry in Human Glioblastoma Cells through Src-120 Catenin Pathway Modulation and RhoA Activity Inhibition. International Journal of Molecular Sciences, 2021, 22, 10530.	1.8	5
2	Experimental Evidence and Clinical Implications of Pituitary Adenoma Stem Cells. Frontiers in Endocrinology, 2020, 11, 54.	1.5	22
3	Effects of Prion Protein on Aβ42 and Pyroglutamate-Modified AβpΕ3-42 Oligomerization and Toxicity. Molecular Neurobiology, 2019, 56, 1957-1971.	1.9	13
4	Autophagy Activator Drugs: A New Opportunity in Neuroprotection from Misfolded Protein Toxicity. International Journal of Molecular Sciences, 2019, 20, 901.	1.8	81
5	Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells, 2019, 8, 1458.	1.8	11
6	Pharmacological activation of autophagy favors the clearing of intracellular aggregates of misfolded prion protein peptide to prevent neuronal death. Cell Death and Disease, 2018, 9, 166.	2.7	38
7	In vitro and in vivo characterization of stem-like cells from canine osteosarcoma and assessment of drug sensitivity. Experimental Cell Research, 2018, 363, 48-64.	1.2	30
8	Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90–231 Neurotoxic Effects in Cerebellar Granule Neurons. Neurotoxicity Research, 2017, 32, 381-397.	1.3	5
9	Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors. Frontiers in Cellular Neuroscience, 2017, 11, 312.	1.8	51
10	A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates. International Journal of Biochemistry and Cell Biology, 2016, 79, 261-270.	1.2	44
11	Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells. Molecular Neurobiology, 2016, 53, 57-72.	1.9	25
12	Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget, 2016, 7, 38638-38657.	0.8	53
13	Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization. Japanese Journal of Veterinary Research, 2016, 64, 101-12.	0.7	4
14	Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. International Journal of Endocrinology, 2014, 2014, 1-16.	0.6	18
15	Excitotoxicity Through NMDA Receptors Mediates Cerebellar Granule Neuron Apoptosis Induced by Prion Protein 90-231 Fragment. Neurotoxicity Research, 2013, 23, 301-314.	1.3	21
16	Metformin selectively affects human glioblastoma tumor-initiating cell viability. Cell Cycle, 2013, 12, 145-156.	1.3	154
17	Peptide Receptor Targeting in Cancer: The Somatostatin Paradigm. International Journal of Peptides, 2013, 2013, 1-20.	0.7	102
18	Role of Prion Protein Aggregation in Neurotoxicity. International Journal of Molecular Sciences, 2012, 13, 8648-8669.	1.8	37

#	Article	IF	CITATIONS
19	Recombinant Human Prion Protein Fragment 90–231, a Useful Model to Study Prion Neurotoxicity. OMICS A Journal of Integrative Biology, 2012, 16, 50-59.	1.0	9
20	Differential toxicity, conformation and morphology of typical initial aggregation states of AÎ ² 1-42 and AÎ ² py3-42 beta-amyloids. International Journal of Biochemistry and Cell Biology, 2012, 44, 2085-2093.	1.2	44
21	Calcium Binding Promotes Prion Protein Fragment 90–231 Conformational Change toward a Membrane Destabilizing and Cytotoxic Structure. PLoS ONE, 2012, 7, e38314.	1.1	14
22	Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling. Journal of Toxicology, 2012, 2012, 1-13.	1.4	56
23	High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein. International Journal of Biochemistry and Cell Biology, 2011, 43, 372-382.	1.2	33
24	Efficacy of Novel Acridine Derivatives in the Inhibition of hPrP90-231 Prion Protein Fragment Toxicity. Neurotoxicity Research, 2011, 19, 556-574.	1.3	31
25	Dual Modulation of ERK1/2 and p38 MAP Kinase Activities Induced by Minocycline Reverses the Neurotoxic Effects of the Prion Protein Fragment 90–231. Neurotoxicity Research, 2009, 15, 138-154.	1.3	31
26	Amyloid Precursor Protein and Presenilin Involvement in Cell Signaling. Neurodegenerative Diseases, 2007, 4, 101-111.	0.8	15
27	ERK1/2 and p38 MAP kinases control prion protein fragment 90–231â€induced astrocyte proliferation and microglia activation. Glia, 2007, 55, 1469-1485.	2.5	32
28	Different structural stability and toxicity of PrPARRand PrPARQsheep prion protein variants. Journal of Neurochemistry, 2007, 103, 2291-2300.	2.1	16
29	Intracellular accumulation of a mild-denatured monomer of the human PrP fragment 90–231, as possible mechanism of its neurotoxic effects. Journal of Neurochemistry, 2007, 103, 071018045431007-???.	2.1	27
30	Amyloid Precursor Protein and Presenilin 1 Interaction Studied by FRET in Human H4 Cells. Annals of the New York Academy of Sciences, 2007, 1096, 249-257.	1.8	15
31	Amino-Terminally Truncated Prion Protein PrP90-231 Induces Microglial Activation in Vitro. Annals of the New York Academy of Sciences, 2007, 1096, 258-270.	1.8	15
32	Pattern of Distribution of Calcitonin Gene-Related Peptide in the Dorsal Root Ganglion of Animal Models of Diabetes Mellitus. Annals of the New York Academy of Sciences, 2006, 1084, 296-303.	1.8	15
33	SDF-1 Controls Pituitary Cell Proliferation through the Activation of ERK1/2 and the Ca2+-Dependent, Cytosolic Tyrosine Kinase Pyk2. Annals of the New York Academy of Sciences, 2006, 1090, 385-398.	1.8	33
34	Amyloid Precursor Protein Modulates ERK-1 and -2 Signaling. Annals of the New York Academy of Sciences, 2006, 1090, 455-465.	1.8	17
35	Chemokine Stromal Cell-Derived Factor 1α Induces Proliferation and Growth Hormone Release in GH4C1 Rat Pituitary Adenoma Cell Line through Multiple Intracellular Signals. Molecular Pharmacology, 2006, 69, 539-546.	1.0	49
36	Characterization of the Proapoptotic Intracellular Mechanisms Induced by a Toxic Conformer of the Recombinant Human Prion Protein Fragment 90-231. Annals of the New York Academy of Sciences, 2006, 1090, 276-291.	1.8	15

#	Article	IF	CITATIONS
37	Somatostatin Receptor Subtype-Dependent Regulation of Nitric Oxide Release: Involvement of Different Intracellular Pathways. Molecular Endocrinology, 2005, 19, 255-267.	3.7	44
38	The Expression of the Phosphotyrosine Phosphatase DEP-1/PTPη Dictates the Responsivity of Glioma Cells to Somatostatin Inhibition of Cell Proliferation. Journal of Biological Chemistry, 2004, 279, 29004-29012.	1.6	55
39	Expression of Somatostatin Receptor mRNA in Human Meningiomas and their Implication in in vitro Antiproliferative Activity. Journal of Neuro-Oncology, 2004, 66, 155-166.	1.4	87
40	The Phosphotyrosine Phosphatase η Mediates Somatostatin Inhibition of Glioma Proliferation via the Dephosphorylation of ERK1/2. Annals of the New York Academy of Sciences, 2004, 1030, 264-274.	1.8	33
41	Prion Protein Fragment 106-126 Induces a p38 MAP Kinase-Dependent Apoptosis in SH-SY5Y Neuroblastoma Cells Independently from the Amyloid Fibril Formation. Annals of the New York Academy of Sciences, 2003, 1010, 610-622.	1.8	47
42	Contribution of two conserved glycine residues to fibrillogenesis of the 106–126 prion protein fragment. Evidence that a soluble variant of the 106–126 peptide is neurotoxic. Journal of Neurochemistry, 2003, 85, 62-72.	2.1	60
43	Characterization of the intracellular mechanisms mediating somatostatin and lanreotide inhibition of DNA synthesis and growth hormone release from dispersed human GH-secreting pituitary adenoma cells in vitro. Clinical Endocrinology, 2003, 59, 115-128.	1.2	48
44	Somatostatin Inhibits Tumor Angiogenesis and Growth via Somatostatin Receptor-3-Mediated Regulation of Endothelial Nitric Oxide Synthase and Mitogen-Activated Protein Kinase Activities. Endocrinology, 2003, 144, 1574-1584.	1.4	160
45	Basic Fibroblast Growth Factor Activates Endothelial Nitric-Oxide Synthase in CHO-K1 Cells via the Activation of Ceramide Synthesis. Molecular Pharmacology, 2003, 63, 297-310.	1.0	32
46	In vitro and in vivo expression of somatostatin receptors in intermediate and malignant soft tissue tumors. Anticancer Research, 2003, 23, 2465-71.	0.5	14
47	p38 MAP Kinase Mediates the Cell Death Induced by PrP106–126 in the SH-SY5Y Neuroblastoma Cells. Neurobiology of Disease, 2002, 9, 69-81.	2.1	59
48	Expression in E. coli and purification of recombinant fragments of wild type and mutant human prion protein. Neurochemistry International, 2002, 41, 55-63.	1.9	31
49	InÂvitro effect of human recombinant leptin and expression of leptin receptors on growth hormone-secreting human pituitary adenomas. Clinical Endocrinology, 2002, 57, 449-455.	1.2	25
50	Nitric Oxide Production Stimulated by the Basic Fibroblast Growth Factor Requires the Synthesis of Ceramide. Annals of the New York Academy of Sciences, 2002, 973, 94-104.	1.8	12
51	The Activation of the Phosphotyrosine Phosphatase η (r-PTPη) Is Responsible for the Somatostatin Inhibition of PC Cl3 Thyroid Cell Proliferation. Molecular Endocrinology, 2001, 15, 1838-1852.	3.7	49
52	The Activation of the Phosphotyrosine Phosphatase (r-PTPÂ) Is Responsible for the Somatostatin Inhibition of PC Cl3 Thyroid Cell Proliferation. Molecular Endocrinology, 2001, 15, 1838-1852.	3.7	29
53	Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. Journal of Physiology (Paris), 2000, 94, 239-250.	2.1	56
54	Apoptotic Cell Death and Impairment of L-Type Voltage-Sensitive Calcium Channel Activity in Rat Cerebellar Granule Cells Treated with the Prion Protein Fragment 106–126. Neurobiology of Disease, 2000, 7, 299-309.	2.1	64

#	Article	IF	CITATIONS
55	Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106–126. International Journal of Developmental Neuroscience, 2000, 18, 481-492.	0.7	56
56	Somatostatin and its analog lanreotide inhibit the proliferation of dispersed human non-functioning pituitary adenoma cells in vitro. European Journal of Endocrinology, 1999, 141, 396-408.	1.9	75
57	Prolonged treatment with α-glycerylphosphorylethanolamine facilitates the acquisition of an active avoidance behavior and selectively increases neuronal signal transduction in rats. Aging Clinical and Experimental Research, 1999, 11, 335-342.	1.4	2