Daniel FernÃ;ndez GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of green body density on the properties of graphite-molybdenum-titanium composite sintered by spark plasma sintering. Journal of the European Ceramic Society, 2022, 42, 2048-2054.	5.7	7
2	MgO–ZrO2 Ceramic Composites for Silicomanganese Production. Materials, 2022, 15, 2421.	2.9	2
3	XPS Study on Calcining Mixtures of Brucite with Titania. Materials, 2022, 15, 3117.	2.9	11
4	Cold Rolling. Deep Drawing. Wire Drawing. Coatings. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 379-475.	1.6	0
5	Strengths and Uncertainties of the Steel as Structural Material. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 477-488.	1.6	0
6	Hot-Working Operations. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 293-378.	1.6	0
7	Solidification of the Steel. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 233-291.	1.6	0
8	Study of copper fixation mechanisms on Bayer Process Electrostatic precipitator Microparticles (BPEM) using 1H and 27Al NMR spectroscopy. Journal of Water Process Engineering, 2021, 39, 101872.	5.6	2
9	Research and Development of Novel Refractory of MgO Doped with ZrO2 Nanoparticles for Copper Slag Resistance. Materials, 2021, 14, 2277.	2.9	13
10	Recovery of Copper and Magnetite from Copper Slag Using Concentrated Solar Power (CSP). Metals, 2021, 11, 1032.	2.3	8
11	Manufacture of a High Temperature Structural Insulator (HTSI) Using Electrofilter Powders Generated in the Bayer Process. Transactions of the Indian Ceramic Society, 2021, 80, 163-173.	1.0	1
12	Synthesis and processing of improved graphite-molybdenum-titanium composites by colloidal route and spark plasma sintering. Ceramics International, 2021, 47, 30993-30998.	4.8	8
13	Consolidation and mechanical properties of ZrCu39.85Y2.37Al1.8 bulk metallic glass obtained from gas-atomized powders by spark plasma sintering. Intermetallics, 2021, 139, 107366.	3.9	7
14	The Basic Oxygen Furnace to Obtain Steel. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 1-81.	1.6	0
15	The Electric Steelworks. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 83-172.	1.6	0
16	Effects of irradiation energy and nanoparticle concentrations on the structure and morphology of laser sintered magnesia with alumina and iron oxide nanoparticles. Ceramics International, 2020, 46, 7850-7860.	4.8	9
17	Effect of Mineral Aggregates and Chemical Admixtures as Internal Curing Agents on the Mechanical Properties and Durability of High-Performance Concrete. Materials, 2020, 13, 2090.	2.9	12
18	Development of an Ultra-Low Carbon MgO Refractory Doped with α-Al2O3 Nanoparticles for the Steelmaking Industry: A Microstructural and Thermo-Mechanical Study. Materials, 2020, 13, 715.	2.9	14

Daniel FernÃindez GonzÃilez

#	Article	IF	CITATIONS
19	Pelletizing. Topics in Mining, Metallurgy and Materials Engineering, 2020, , 65-92.	1.6	0
20	Ironmaking Coke. Topics in Mining, Metallurgy and Materials Engineering, 2020, , 93-113.	1.6	0
21	Production of Iron by Reduction with Gas. Topics in Mining, Metallurgy and Materials Engineering, 2020, , 115-137.	1.6	Ο
22	The treatment of Basic Oxygen Furnace (BOF) slag with concentrated solar energy. Solar Energy, 2019, 180, 372-382.	6.1	33
23	Transformations in the Mn-O-Si system using concentrated solar energy. Solar Energy, 2019, 184, 148-152.	6.1	14
24	Transformations in the Si-O-Ca system: Silicon-calcium via solar energy. Solar Energy, 2019, 181, 414-423.	6.1	15
25	MgO Refractory Doped with ZrO2 Nanoparticles: Influence of Cold Isostatic and Uniaxial Pressing and Sintering Temperature in the Physical and Chemical Properties. Metals, 2019, 9, 1297.	2.3	6
26	Iron Metallurgy via Concentrated Solar Energy. Metals, 2018, 8, 873.	2.3	18
27	Silicomanganese and Ferromanganese Slags Treated with Concentrated Solar Energy. Proceedings (mdpi), 2018, 2, .	0.2	2
28	Anodic Lodes and Scrapings as a Source of Electrolytic Manganese. Metals, 2018, 8, 162.	2.3	6
29	Solar synthesis of calcium aluminates. Solar Energy, 2018, 171, 658-666.	6.1	36
30	Physical Metallurgy of Cast Irons. , 2018, , .		21
31	Concentrated solar energy applications in materials science and metallurgy. Solar Energy, 2018, 170, 520-540.	6.1	88
32	Iron Ore Sintering: Process. Mineral Processing and Extractive Metallurgy Review, 2017, 38, 215-227.	5.0	68
33	Iron Ore Sintering: Environment, Automatic, and Control Techniques. Mineral Processing and Extractive Metallurgy Review, 2017, 38, 238-249.	5.0	20
34	Iron Ore Sintering: Quality Indices. Mineral Processing and Extractive Metallurgy Review, 2017, 38, 254-264.	5.0	39
35	Tribo-corrosion protection of valves and rotors using cermet layers applied with HVOF. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 373-378.	1.1	2
36	Iron Ore Sintering: Raw Materials and Granulation. Mineral Processing and Extractive Metallurgy Review, 2017, 38, 36-46.	5.0	62

#	Article	IF	CITATIONS
37	Cold Agglomeration of Ultrafine Oxidized Dust (UOD) from Ferromanganese and Silicomanganese Industrial Process. Metals, 2016, 6, 203.	2.3	14
38	Optimization of Sinter Plant Operating Conditions Using Advanced Multivariate Statistics: Intelligent Data Processing. Jom, 2016, 68, 2089-2095.	1.9	16
39	Blast furnace and metallurgical coke's reactivity and its determination by thermal gravimetric analysis. Ironmaking and Steelmaking, 2015, 42, 618-625.	2.1	17
40	Transformations in the Iron-Manganese-Oxygen-Carbon System Resulted from Treatment of Solar Energy with High Concentration. Steel Research International, 2014, 85, 1469-1476.	1.8	15
41	Iron Ore Agglomeration Technologies. , 0, , .		12