Mahmoud Labib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9367025/publications.pdf

Version: 2024-02-01

61 papers

3,645 citations

34 h-index 59 g-index

61 all docs

61 docs citations

61 times ranked

5094 citing authors

#	Article	IF	CITATIONS
1	Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nature Biomedical Engineering, 2022, 6, 108-117.	11.6	31
2	PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. Small, 2022, 18, e2106097.	5.2	17
3	Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nature Biomedical Engineering, 2021, 5, 41-52.	11.6	40
4	Circulating tumor cell profiling for precision oncology. Molecular Oncology, 2021, 15, 1622-1646.	2.1	33
5	A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. Lab on A Chip, 2021, 21, 4464-4476.	3.1	3
6	Nanostructured Architectures for Biomolecular Detection inside and outside the Cell. Advanced Functional Materials, 2020, 30, 1907701.	7.8	19
7	Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosensors and Bioelectronics, 2020, 150, 111933.	5.3	118
8	A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine, 2020, 61, 103031.	2.7	7
9	Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. Accounts of Chemical Research, 2020, 53, 1445-1457.	7.6	18
10	Nanostructured Architectures Promote the Mesenchymal–Epithelial Transition for Invasive Cells. ACS Nano, 2020, 14, 5324-5336.	7.3	17
11	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. Science Advances, 2020, 6, eaay7629.	4.7	28
12	Single-cell analysis targeting the proteome. Nature Reviews Chemistry, 2020, 4, 143-158.	13.8	157
13	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie, 2019, 131, 14661-14665.	1.6	6
14	Potentialâ€Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie - International Edition, 2019, 58, 14519-14523.	7.2	40
15	Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Analytical Chemistry, 2019, 91, 9348-9355.	3.2	29
16	Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41030-41037.	4.0	10
17	High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nature Biomedical Engineering, 2019, 3, 796-805.	11.6	53
18	Nanoparticle-Mediated Capture and Electrochemical Detection of Methicillin-Resistant <i>Staphylococcus aureus </i> . Analytical Chemistry, 2019, 91, 2847-2853.	3.2	60

#	Article	IF	CITATIONS
19	Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nature Chemistry, 2018, 10, 489-495.	6.6	68
20	Single-Cell Tumbling Enables High-Resolution Size Profiling of Retinal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34811-34816.	4.0	10
21	Three-Dimensional Nanostructured Architectures Enable Efficient Neural Differentiation of Mesenchymal Stem Cells via Mechanotransduction. Nano Letters, 2018, 18, 7188-7193.	4.5	60
22	Pathogenic Bacteria Detection: A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria (Small 35/2018). Small, 2018, 14, 1870159.	5.2	0
23	A Hierarchical 3D Nanostructured Microfluidic Device for Sensitive Detection of Pathogenic Bacteria. Small, 2018, 14, e1801893.	5.2	47
24	Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Twoâ€Dimensional Sorting Device. Angewandte Chemie, 2017, 129, 169-174.	1.6	8
25	Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Twoâ€Dimensional Sorting Device. Angewandte Chemie - International Edition, 2017, 56, 163-168.	7.2	85
26	Isolation of Phenotypically Distinct Cancer Cells Using Nanoparticle-Mediated Sorting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20435-20443.	4.0	38
27	Functionalization of Ruthenium(II)(η ⁶ â€ <i>p</i> â€cymene)(3â€hydroxyâ€2â€pyridone) Complexes (Thio)Morpholine: Synthesis and Bioanalytical Studies. ChemPlusChem, 2017, 82, 841-847.	wjth 1.3	13
28	Profilierung zirkulierender Tumorzellen mit Apparaturen und Materialien der nÄ g hsten Generation. Angewandte Chemie, 2016, 128, 1270-1284.	1.6	12
29	Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews, 2016, 116, 9001-9090.	23.0	702
30	Beyond the Capture of Circulating Tumor Cells: Nextâ€Generation Devices and Materials. Angewandte Chemie - International Edition, 2016, 55, 1252-1265.	7.2	144
31	Aptamer and Antisense-Mediated Two-Dimensional Isolation of Specific Cancer Cell Subpopulations. Journal of the American Chemical Society, 2016, 138, 2476-2479.	6.6	119
32	Electrochemical sensing of microRNAs: Avenues and paradigms. Biosensors and Bioelectronics, 2015, 68, 83-94.	5.3	64
33	Protein Electrocatalysis for Direct Sensing of Circulating MicroRNAs. Analytical Chemistry, 2015, 87, 1395-1403.	3.2	38
34	Switchable aptamers for biosensing and bioseparation of viruses (SwAps-V). Biosensors and Bioelectronics, 2015, 67, 280-286.	5.3	21
35	Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers. PLoS ONE, 2015, 10, e0137455.	1.1	52
36	Three-Mode Electrochemical Sensing of Ultralow MicroRNA Levels. Journal of the American Chemical Society, 2013, 135, 3027-3038.	6.6	207

3

#	Article	IF	CITATIONS
37	Four-Way Junction Formation Promoting Ultrasensitive Electrochemical Detection of MicroRNA. Analytical Chemistry, 2013, 85, 9422-9427.	3.2	76
38	Electrochemical Aptasensors for Microbial and Viral Pathogens. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 155-181.	0.6	13
39	Multifunctional electrochemical aptasensor for aptamer clones screening, virus quantitation in blood and viability assessment. Analyst, The, 2013, 138, 1865.	1.7	17
40	Ultrasensitive Norovirus Detection Using DNA Aptasensor Technology. PLoS ONE, 2013, 8, e79087.	1.1	94
41	Electrochemical Sensing of Aptamer-Facilitated Virus Immunoshielding. Analytical Chemistry, 2012, 84, 1677-1686.	3.2	43
42	Aptamer-Based Impedimetric Sensor for Bacterial Typing. Analytical Chemistry, 2012, 84, 8114-8117.	3.2	81
43	Anti-Fab Aptamers for Shielding Virus from Neutralizing Antibodies. Journal of the American Chemical Society, 2012, 134, 17168-17177.	6.6	31
44	Aptamer-Based Viability Impedimetric Sensor for Bacteria. Analytical Chemistry, 2012, 84, 8966-8969.	3.2	131
45	Synthesis and Surface Investigations of N-Substituted 2,5-Dithio-7-azabicyclo[2.2.1]heptanes on Gold Surfaces. Journal of Physical Chemistry C, 2012, 116, 7886-7896.	1.5	10
46	Electrochemical Differentiation of Epitope-Specific Aptamers. Analytical Chemistry, 2012, 84, 2548-2556.	3.2	31
47	Aptamer-Based Viability Impedimetric Sensor for Viruses. Analytical Chemistry, 2012, 84, 1813-1816.	3.2	86
48	Towards an early diagnosis of HIV infection: an electrochemical approach for detection of HIV-1 reverse transcriptase enzyme. Analyst, The, 2011, 136, 708-715.	1.7	40
49	Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations. Analyst, The, 2011, 136, 107-112.	1.7	40
50	Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface. Talanta, 2011, 85, 770-778.	2.9	38
51	On chip electrochemical detection of sarcoma protein kinase and HIV-1 reverse transcriptase. Talanta, 2011, 85, 2430-2436.	2.9	15
52	Electrochemical investigations of sarcoma-related protein kinase inhibition. Electrochimica Acta, 2011, 56, 10676-10682.	2.6	22
53	Ferrocene-peptido conjugates: From synthesis to sensory applications. Dalton Transactions, 2011, 40, 7264.	1.6	119
54	Probing the Role of the Linker in Ferrocene–ATP Conjugates: Monitoring Protein Kinase Catalyzed Phosphorylations Electrochemically. Chemistry - A European Journal, 2011, 17, 6744-6752.	1.7	36

#	Article	IF	CITATIONS
55	A bioorganometallic approach for rapid electrochemical analysis of human immunodeficiency virus type-1 reverse transcriptase in serum. Electrochimica Acta, 2011, 56, 5122-5128.	2.6	22
56	Competitive capacitive biosensing technique (CCBT): A novel technique for monitoring low molecular mass analytes using glucose assay as a model study. Analytical and Bioanalytical Chemistry, 2010, 397, 1217-1224.	1.9	17
57	A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode. Analytica Chimica Acta, 2010, 659, 194-200.	2.6	59
58	Is the Reactivity of $M(II)\hat{a}^2$ Arene Complexes of 3-Hydroxy-2(1 <i>H</i>)-pyridones to Biomolecules the Anticancer Activity Determining Parameter?. Inorganic Chemistry, 2010, 49, 7953-7963.	1.9	101
59	A multipurpose capacitive biosensor for assay and quality control of human immunoglobulin G. Biotechnology and Bioengineering, 2009, 104, 312-320.	1.7	36
60	A capacitive biosensor for detection of staphylococcal enterotoxin B. Analytical and Bioanalytical Chemistry, 2009, 393, 1539-1544.	1.9	50
61	A capacitive immunosensor for detection of cholera toxin. Analytica Chimica Acta, 2009, 634, 255-261.	2.6	63