
Cesar Hervas-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9366531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordinal Regression Methods: Survey and Experimental Study. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 127-146.	4.0	300
2	Cooperative Coevolution of Artificial Neural Network Ensembles for Pattern Classification. IEEE Transactions on Evolutionary Computation, 2005, 9, 271-302.	7.5	195
3	Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative) Tj ETQq1 1 0.78	34314 rgB 3.3	T /Overlock 158
4	Object-Based Image Classification of Summer Crops with Machine Learning Methods. Remote Sensing, 2014, 6, 5019-5041.	1.8	152
5	Sensitivity Versus Accuracy in Multiclass Problems Using Memetic Pareto Evolutionary Neural Networks. IEEE Transactions on Neural Networks, 2010, 21, 750-770.	4.8	139
6	Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery. Expert Systems With Applications, 2016, 47, 85-94.	4.4	132
7	JCLEC: a Java framework for evolutionary computation. Soft Computing, 2007, 12, 381-392.	2.1	120
8	A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognition, 2011, 44, 1821-1833.	5.1	119
9	Evolutionary product unit based neural networks for regression. Neural Networks, 2006, 19, 477-486.	3.3	96
10	Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study. Journal of Hepatology, 2014, 61, 1020-1028.	1.8	90
11	A Review of Classification Problems and Algorithms in Renewable Energy Applications. Energies, 2016, 9, 607.	1.6	87
12	Improving artificial neural networks with a pruning methodology and genetic algorithms for their application in microbial growth prediction in food. International Journal of Food Microbiology, 2002, 72, 19-30.	2.1	86
13	Hybridization of evolutionary algorithms and local search by means of a clustering method. IEEE Transactions on Systems, Man, and Cybernetics, 2006, 36, 534-545.	5.5	85
14	Evolutionary product-unit neural networks classifiers. Neurocomputing, 2008, 72, 548-561.	3.5	82
15	Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing, 2014, 135, 21-31.	3.5	74
16	Logistic Regression by Means of Evolutionary Radial Basis Function Neural Networks. IEEE Transactions on Neural Networks, 2011, 22, 246-263.	4.8	70
17	PCA-ELM: A Robust and Pruned Extreme Learning Machine Approach Based on Principal Component Analysis. Neural Processing Letters, 2013, 37, 377-392.	2.0	69
18	Evolutionary Generalized Radial Basis Function neural networks for improving prediction accuracy in gene classification using feature selection. Applied Soft Computing Journal, 2012, 12, 1787-1800.	4.1	67

CESAR HERVAS-MARTÃNEZ

#	Article	IF	CITATIONS
19	An alternative approach for neural network evolution with a genetic algorithm: Crossover by combinatorial optimization. Neural Networks, 2006, 19, 514-528.	3.3	65
20	MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing, 2011, 74, 2502-2510.	3.5	63
21	Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. Artificial Intelligence in Medicine, 2013, 58, 37-49.	3.8	59
22	Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks. International Journal of Food Microbiology, 2005, 105, 317-332.	2.1	57
23	Performance of response surface model for prediction of Leuconostoc mesenteroides growth parameters under different experimental conditions. Food Control, 2006, 17, 429-438.	2.8	56
24	Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Networks, 2020, 123, 401-411.	3.3	54
25	Oversampling the Minority Class in the Feature Space. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1947-1961.	7.2	53
26	Machine Learning Methods for Binary and Multiclass Classification of Melanoma Thickness From Dermoscopic Images. IEEE Transactions on Medical Imaging, 2016, 35, 1036-1045.	5.4	51
27	Graph-Based Approaches for Over-Sampling in the Context of Ordinal Regression. IEEE Transactions on Knowledge and Data Engineering, 2015, 27, 1233-1245.	4.0	48
28	Validation of artificial neural networks as a methodology for donorâ€recipient matching for liver transplantation, 2018, 24, 192-203.	1.3	47
29	Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing, 2009, 72, 2731-2742.	3.5	46
30	Multilogistic regression by means of evolutionary product-unit neural networks. Neural Networks, 2008, 21, 951-961.	3.3	45
31	Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture, 2008, 64, 293-306.	3.7	43
32	Projection-Based Ensemble Learning for Ordinal Regression. IEEE Transactions on Cybernetics, 2014, 44, 681-694.	6.2	41
33	Year clustering analysis for modelling olive flowering phenology. International Journal of Biometeorology, 2013, 57, 545-555.	1.3	38
34	Biometeorological and autoregressive indices for predicting olive pollen intensity. International Journal of Biometeorology, 2013, 57, 307-316.	1.3	38
35	An organ allocation system for liver transplantation based on ordinal regression. Applied Soft Computing Journal, 2014, 14, 88-98.	4.1	37
36	Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artificial Intelligence in Medicine, 2017, 77, 1-11.	3.8	35

Cesar Hervas-MartÃnez

#	Article	IF	CITATIONS
37	Parameter estimation of q-Gaussian Radial Basis Functions Neural Networks with a Hybrid Algorithm for binary classification. Neurocomputing, 2012, 75, 123-134.	3.5	33
38	Web-based adaptive training simulator system for cardiac life support. Artificial Intelligence in Medicine, 2006, 38, 67-78.	3.8	32
39	Logistic regression using covariates obtained by product-unit neural network models. Pattern Recognition, 2007, 40, 52-64.	5.1	32
40	Negative Correlation Ensemble Learning for Ordinal Regression. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24, 1836-1849.	7.2	32
41	A multi-objective neural network based method for cover crop identification from remote sensed data. Expert Systems With Applications, 2012, 39, 10038-10048.	4.4	31
42	Simultaneous modelling of rainfall occurrence and amount using a hierarchical nominal–ordinal support vector classifier. Engineering Applications of Artificial Intelligence, 2014, 34, 199-207.	4.3	30
43	Development of a multi-classification neural network model to determine the microbial growth/no growth interface. International Journal of Food Microbiology, 2010, 141, 203-212.	2.1	29
44	Hybridizing logistic regression with product unit and RBF networks for accurate detection and prediction of banking crises. Omega, 2010, 38, 333-344.	3.6	27
45	Exploitation of Pairwise Class Distances for Ordinal Classification. Neural Computation, 2013, 25, 2450-2485.	1.3	27
46	Product unit neural network models for predicting the growth limits of Listeria monocytogenes. Food Microbiology, 2007, 24, 452-464.	2.1	26
47	Evolutionary <mml:math <br="" altimg="si13.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>q</mml:mi></mml:math> -Gaussian radial basis function neural networks for multiclassification. Neural Networks, 2011, 24, 779-784.	3.3	26
48	Addressing the EU Sovereign Ratings Using an Ordinal Regression Approach. IEEE Transactions on Cybernetics, 2013, 43, 2228-2240.	6.2	26
49	Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm. Climate Dynamics, 2015, 44, 1919-1933.	1.7	26
50	Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms. Computers and Operations Research, 2005, 32, 2653-2670.	2.4	25
51	Improving crossover operator for real-coded genetic algorithms using virtual parents. Journal of Heuristics, 2007, 13, 265-314.	1.1	25
52	Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology. Applied Soft Computing Journal, 2011, 11, 534-550.	4.1	25
53	Feature selection to enhance a two-stage evolutionary algorithm in product unit neural networks for complex classification problems. Neurocomputing, 2013, 114, 107-117.	3.5	25
54	A statistically-driven Coral Reef Optimization algorithm for optimal size reduction of time series. Applied Soft Computing Journal, 2018, 63, 139-153.	4.1	25

#	Article	IF	CITATIONS
55	Multi-objective evolutionary algorithm for donor–recipient decision system in liver transplants. European Journal of Operational Research, 2012, 222, 317-327.	3.5	24
56	Ordinal regression neural networks based on concentric hyperspheres. Neural Networks, 2014, 59, 51-60.	3.3	24
57	Optimising Convolutional Neural Networks using a Hybrid Statistically-driven Coral Reef Optimisation algorithm. Applied Soft Computing Journal, 2020, 90, 106144.	4.1	24
58	Time-Series Clustering Based on the Characterization of Segment Typologies. IEEE Transactions on Cybernetics, 2021, 51, 5409-5422.	6.2	24
59	An Experimental Study of Different Ordinal Regression Methods and Measures. Lecture Notes in Computer Science, 2012, , 296-307.	1.0	22
60	Non-linear multiclassifier model based on Artificial Intelligence to predict research and development performance in European countries. Technological Forecasting and Social Change, 2012, 79, 1731-1745.	6.2	20
61	Cumulative link models for deep ordinal classification. Neurocomputing, 2020, 401, 48-58.	3.5	20
62	Cooperative coevolution of generalized multi-layer perceptrons. Neurocomputing, 2004, 56, 257-283.	3.5	19
63	Weighting Efficient Accuracy and Minimum Sensitivity for Evolving Multi-Class Classifiers. Neural Processing Letters, 2011, 34, 101-116.	2.0	19
64	Evolutionary q-Gaussian Radial Basis Function Neural Network to determine the microbial growth/no growth interface of Staphylococcus aureus. Applied Soft Computing Journal, 2011, 11, 3012-3020.	4.1	19
65	Classification of EU countries' progress towards sustainable development based on ordinal regression techniques. Knowledge-Based Systems, 2014, 66, 178-189.	4.0	19
66	A hybrid dynamic exploitation barebones particle swarm optimisation algorithm for time series segmentation. Neurocomputing, 2019, 353, 45-55.	3.5	19
67	Searching for New Mathematical Growth Model Approaches for Listeria monocytogenes. Journal of Food Science, 2007, 72, M016-M025.	1.5	18
68	Ordinal and nominal classification of wind speed from synoptic pressurepatterns. Engineering Applications of Artificial Intelligence, 2013, 26, 1008-1015.	4.3	18
69	Time series forecasting by recurrent product unit neural networks. Neural Computing and Applications, 2018, 29, 779-791.	3.2	18
70	A two-stage algorithm in evolutionary product unit neural networks for classification. Expert Systems With Applications, 2011, 38, 743-754.	4.4	17
71	Classification of countries' progress toward a knowledge economy based on machine learning classification techniques. Expert Systems With Applications, 2015, 42, 562-572.	4.4	17
72	Generalised Gaussian radial basis function neural networks. Soft Computing, 2013, 17, 519-533.	2.1	16

#	Article	IF	CITATIONS
73	Partial order label decomposition approaches for melanoma diagnosis. Applied Soft Computing Journal, 2018, 64, 341-355.	4.1	16
74	Multilogistic regression by evolutionary neural network as a classification tool to discriminate highly overlapping signals: Qualitative investigation of volatile organic compounds in polluted waters by using headspace-mass spectrometric analysis. Chemometrics and Intelligent Laboratory Systems, 2008, 92, 179-185.	1.8	15
75	Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector. Expert Systems With Applications, 2009, 36, 12225-12235.	4.4	14
76	Evolutionary product unit neural networks for short-term wind speed forecasting in wind farms. Neural Computing and Applications, 2012, 21, 993-1005.	3.2	14
77	Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS ONE, 2021, 16, e0252068.	1.1	14
78	Hyperbolic Tangent Basis Function Neural Networks Training by Hybrid Evolutionary Programming for Accurate Short-Term Wind Speed Prediction. , 2009, , .		13
79	Neuro-logistic Models Based on Evolutionary Generalized Radial Basis Function for the Microarray Gene Expression Classification Problem. Neural Processing Letters, 2011, 34, 117-131.	2.0	13
80	Determination of relative agrarian technical efficiency by a dynamic over-sampling procedure guided by minimum sensitivity. Expert Systems With Applications, 2011, 38, 12483-12490.	4.4	13
81	An evolutionary neural system for incorporating expert knowledge into the UA-FLP. Neurocomputing, 2014, 135, 69-78.	3.5	13
82	Improving the Quantification of Highly Overlapping Chromatographic Peaks by Using Product Unit Neural Networks Modeled by an Evolutionary Algorithm. Journal of Chemical Information and Modeling, 2005, 45, 894-903.	2.5	12
83	Designing multilayer perceptrons using a Guided Saw-tooth Evolutionary Programming Algorithm. Soft Computing, 2010, 14, 599-613.	2.1	12
84	Income prediction in the agrarian sector using product unit neural networks. European Journal of Operational Research, 2010, 204, 355-365.	3.5	12
85	PpcProject: An educational tool for software project management. Computers and Education, 2013, 69, 181-188.	5.1	12
86	Multi-objective evolutionary optimization using the relationship between F1 and accuracy metrics in classification tasks. Applied Intelligence, 2019, 49, 3447-3463.	3.3	12
87	A novel approach for global solar irradiation forecasting on tilted plane using Hybrid Evolutionary Neural Networks. Journal of Cleaner Production, 2021, 287, 125577.	4.6	12
88	Improving Microbial Growth Prediction by Product Unit Neural Networks. Journal of Food Science, 2006, 71, M31.	1.5	11
89	A guided data projection technique for classification of sovereign ratings: The case of European Union 27. Applied Soft Computing Journal, 2014, 22, 339-350.	4.1	11
90	An ordinal CNN approach for the assessment of neurological damage in Parkinson's disease patients. Expert Systems With Applications, 2021, 182, 115271.	4.4	11

CESAR HERVAS-MARTÃNEZ

#	Article	IF	CITATIONS
91	Noise prediction of a diesel engine fueled with olive pomace oil methyl ester blended with diesel fuel. Fuel, 2012, 98, 280-287.	3.4	10
92	A two-stage evolutionary algorithm based on sensitivity and accuracy for multi-class problems. Information Sciences, 2012, 197, 20-37.	4.0	10
93	Short- and long-term energy flux prediction using Multi-Task Evolutionary Artificial Neural Networks. Ocean Engineering, 2020, 216, 108089.	1.9	10
94	A novel deep ordinal classification approach for aesthetic quality control classification. Neural Computing and Applications, 2022, 34, 11625-11639.	3.2	10
95	Analyzing the statistical features of CIXL2 crossover offspring. Soft Computing, 2005, 9, 270-279.	2.1	9
96	Evolutionary learning by a sensitivity-accuracy approach for multi-class problems. , 2008, , .		9
97	Ensembles of evolutionary product unit or RBF neural networks for the identification of sound for pass-by noise test in vehicles. Neurocomputing, 2013, 109, 56-65.	3.5	9
98	Synthetic semi-supervised learning in imbalanced domains: Constructing a model for donor-recipient matching in liver transplantation. Knowledge-Based Systems, 2017, 123, 75-87.	4.0	9
99	Sensitivity versus accuracy in ensemble models of Artificial Neural Networks from Multi-objective Evolutionary Algorithms. Neural Computing and Applications, 2018, 30, 289-305.	3.2	9
100	Building Suitable Datasets for Soft Computing and Machine Learning Techniques from Meteorological Data Integration: A Case Study for Predicting Significant Wave Height and Energy Flux. Energies, 2021, 14, 468.	1.6	9
101	Ordinal Classification Using Hybrid Artificial Neural Networks with Projection and Kernel Basis Functions. Lecture Notes in Computer Science, 2012, , 319-330.	1.0	9
102	Memetic algorithms-based artificial multiplicative neural models selection for resolving multi-component mixtures based on dynamic responses. Chemometrics and Intelligent Laboratory Systems, 2007, 85, 232-242.	1.8	8
103	A logistic radial basis function regression method for discrimination of cover crops in olive orchards. Expert Systems With Applications, 2010, 37, 8432-8444.	4.4	8
104	Identifying Market Behaviours Using European Stock Index Time Series by a Hybrid Segmentation Algorithm. Neural Processing Letters, 2017, 46, 767-790.	2.0	8
105	Ordinal classification of the affectation level of 3D-images in Parkinson diseases. Scientific Reports, 2021, 11, 7067.	1.6	8
106	Unimodal regularisation based on beta distribution for deep ordinal regression. Pattern Recognition, 2022, 122, 108310.	5.1	8
107	Fisher Score-Based Feature Selection for Ordinal Classification: A Social Survey on Subjective Well-Being. Lecture Notes in Computer Science, 2016, , 597-608.	1.0	8
108	Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Computing, 2013, 17, 275-284.	2.1	7

#	Article	IF	CITATIONS
109	Semi-supervised learning for ordinal Kernel Discriminant Analysis. Neural Networks, 2016, 84, 57-66.	3.3	7
110	Improving the Accuracy of a Two-Stage Algorithm in Evolutionary Product Unit Neural Networks for Classification by Means of Feature Selection. Lecture Notes in Computer Science, 2011, , 381-390.	1.0	7
111	An n-Spheres Based Synthetic Data Generator for Supervised Classification. Lecture Notes in Computer Science, 2013, , 613-621.	1.0	7
112	A Study on Multi-Scale Kernel Optimisation via Centered Kernel-Target Alignment. Neural Processing Letters, 2016, 44, 491-517.	2.0	6
113	Machine learning methods in organ transplantation. Current Opinion in Organ Transplantation, 2020, Publish Ahead of Print, 399-405.	0.8	6
114	Evolutionary Ordinal Extreme Learning Machine. Lecture Notes in Computer Science, 2013, , 500-509.	1.0	6
115	Logistic evolutionary product-unit neural networks: Innovation capacity of poor Guatemalan households. European Journal of Operational Research, 2009, 195, 543-551.	3.5	5
116	Rating the Rich: An Ordinal Classification to Determine Which Rich Countries are Helping Poorer Ones the Most. Social Indicators Research, 2014, 116, 47-65.	1.4	5
117	Addressing remitting behavior using an ordinal classification approach. Expert Systems With Applications, 2014, 41, 4752-4761.	4.4	5
118	Classification of Melanoma Presence and Thickness Based on Computational Image Analysis. Lecture Notes in Computer Science, 2016, , 427-438.	1.0	5
119	Multiclass Prediction of Wind Power Ramp Events Combining Reservoir Computing and Support Vector Machines. Lecture Notes in Computer Science, 2016, , 300-309.	1.0	5
120	Enforcement of the principal component analysis–extreme learning machine algorithm by linear discriminant analysis. Neural Computing and Applications, 2016, 27, 1749-1760.	3.2	5
121	Simultaneous optimisation of clustering quality and approximation error for time series segmentation. Information Sciences, 2018, 442-443, 186-201.	4.0	5
122	Time series ordinal classification via shapelets. , 2020, , .		4
123	Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals. PLoS ONE, 2020, 15, e0227188.	1.1	4
124	An Experimental Comparison for the Identification of Weeds in Sunflower Crops via Unmanned Aerial Vehicles and Object-Based Analysis. Lecture Notes in Computer Science, 2015, , 252-262.	1.0	4
125	Evolutionary Learning Using a Sensitivity-Accuracy Approach for Classification. Lecture Notes in Computer Science, 2010, , 288-295.	1.0	4
126	SYMBIONT: A Cooperative Evolutionary Model for Evolving Artificial Neural Networks for Classification. Studies in Fuzziness and Soft Computing, 2002, , 341-354.	0.6	4

#	Article	IF	CITATIONS
127	Permanent disability classification by combining evolutionary Generalized Radial Basis Function and logistic regression methods. Expert Systems With Applications, 2012, 39, 8350-8355.	4.4	3
128	Dynamical memetization in coral reef optimization algorithms for optimal time series approximation. Progress in Artificial Intelligence, 2019, 8, 253-262.	1.5	3
129	Prediction of convective clouds formation using evolutionary neural computation techniques. Neural Computing and Applications, 2020, 32, 13917-13929.	3.2	3
130	Ordinal Versus Nominal Time Series Classification. Lecture Notes in Computer Science, 2020, , 19-29.	1.0	3
131	Combining Reservoir Computing and Over-Sampling for Ordinal Wind Power Ramp Prediction. Lecture Notes in Computer Science, 2017, , 708-719.	1.0	3
132	Robust confidence intervals applied to crossover operator for real-coded genetic algorithms. Soft Computing, 2008, 12, 809-833.	2.1	2
133	Memetic evolutionary multi-objective neural network classifier to predict graft survival in liver transplant patients. , 2011, , .		2
134	Time Series Representation by a Novel Hybrid Segmentation Algorithm. Lecture Notes in Computer Science, 2016, , 163-173.	1.0	2
135	Statistically-driven Coral Reef metaheuristic for automatic hyperparameter setting and architecture design of Convolutional Neural Networks. , 2020, , .		2
136	Modelling Survival by Machine Learning Methods in Liver Transplantation: Application to the UNOS Dataset. Lecture Notes in Computer Science, 2019, , 97-104.	1.0	2
137	Ordinal Evolutionary Artificial Neural Networks for Solving an Imbalanced Liver Transplantation Problem. Lecture Notes in Computer Science, 2016, , 451-462.	1.0	2
138	COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain. Expert Systems With Applications, 2022, 207, 117977.	4.4	2
139	Generalized Logistic Regression Models Using Neural Network Basis Functions Applied to the Detection of Banking Crises. Lecture Notes in Computer Science, 2010, , 1-10.	1.0	1
140	Learning Artificial Neural Networks multiclassifiers by evolutionary multiobjective differential evolution guided by statistical distributions. , 2010, , .		1
141	Selecting the best artificial neural network model from a multi-objective Differential Evolution Pareto front. , 2011, , .		1
142	Improvement of accuracy in a sound synthesis method using Evolutionary Product Unit Networks. Expert Systems With Applications, 2013, 40, 1477-1483.	4.4	1
143	From outside to hyper-globalisation: an Artificial Neural Network ordinal classifier applied to measure the extent of globalisation. Quality and Quantity, 2016, 50, 549-576.	2.0	1
144	Identification of extreme wave heights with an evolutionary algorithm in combination with a likelihood-based segmentation. Progress in Artificial Intelligence, 2017, 6, 59-66.	1.5	1

#	Article	IF	CITATIONS
145	Confidence interval based crossover using a L 1 norm localization estimator for real-coded genetic algorithms. , 2003, , 297-306.		1
146	An Empirical Validation of a New Memetic CRO Algorithm for the Approximation of Time Series. Lecture Notes in Computer Science, 2018, , 209-218.	1.0	1
147	Fine-to-Coarse Ranking in Ordinal and Imbalanced Domains: An Application to Liver Transplantation. Lecture Notes in Computer Science, 2017, , 525-537.	1.0	1
148	Hybrid Weighted Barebones Exploiting Particle Swarm Optimization Algorithm for Time Series Representation. Lecture Notes in Computer Science, 2018, , 126-137.	1.0	1
149	Hybrid Multilogistic Regression by Means of Evolutionary Radial Basis Functions: Application to Precision Agriculture. Lecture Notes in Computer Science, 2009, , 244-251.	1.0	1
150	Hybrid Pareto Differential Evolutionary Artificial Neural Networks to Determined Growth Multi-classes in Predictive Microbiology. Lecture Notes in Computer Science, 2010, , 646-655.	1.0	1
151	An Extended Approach of a Two-Stage Evolutionary Algorithm in Artificial Neural Networks for Multiclassification Tasks. Studies in Computational Intelligence, 2013, , 139-153.	0.7	1
152	An Ordinal Regression Approach for the Unequal Area Facility Layout Problem. Advances in Intelligent Systems and Computing, 2013, , 13-21.	0.5	1
153	Evolutionary q-Gaussian Radial Basis Functions for Binary-Classification. Lecture Notes in Computer Science, 2010, , 280-287.	1.0	1
154	Kernelizing the Proportional Odds Model through the Empirical Kernel Mapping. Lecture Notes in Computer Science, 2013, , 270-279.	1.0	1
155	Multiobjective Pareto Ordinal Classification for Predictive Microbiology. Advances in Intelligent Systems and Computing, 2013, , 153-162.	0.5	1
156	Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model. Lecture Notes in Computer Science, 2015, , 92-102.	1.0	1
157	Distribution-Based Discretisation and Ordinal Classification Applied to Wave Height Prediction. Lecture Notes in Computer Science, 2018, , 171-179.	1.0	1
158	Error-Correcting Output Codes in the Framework of Deep Ordinal Classification. Neural Processing Letters, 0, , 1.	2.0	1
159	Memetic Algorithms to Product-Unit Neural Networks for Regression. Lecture Notes in Computer Science, 2005, , 83-90.	1.0	0
160	A Sensitivity Clustering Method for Memetic Training of Radial Basis Function Neural Networks. , 2009, , .		0
161	MultiLogistic Regression using Initial and Radial Basis Function covariates. , 2009, , .		0
162	Design of Artificial Neural Networks Using a Memetic Pareto Evolutionary Algorithm Using as Objectives Entropy versus Variation Coefficient. , 2009, , .		0

CESAR HERVAS-MARTÃNEZ

#	Article	IF	CITATIONS
163	Permanent disability classification using hybrid neuro-logistic regression models. , 2011, , .		0
164	A STRUCTURAL DISTANCE-BASED CROSSOVER FOR NEURAL NETWORK CLASSIFIERS. International Journal of Pattern Recognition and Artificial Intelligence, 2012, 26, 1250012.	0.7	0
165	Hybrid Multi-objective Machine Learning Classification in Liver Transplantation. Lecture Notes in Computer Science, 2012, , 397-408.	1.0	Ο
166	Logistic evolutionary product-unit neural network classifier: the case of agrarian efficiency. Progress in Artificial Intelligence, 2015, 4, 59-67.	1.5	0
167	Nonlinear Ordinal Logistic Regression Using Covariates Obtained by Radial Basis Function Neural Networks Models. Lecture Notes in Computer Science, 2015, , 80-91.	1.0	0
168	Hybridization of neural network models for the prediction of Extreme Significant Wave Height segments. , 2016, , .		0
169	On the Use of the Beta Distribution for a Hybrid Time Series Segmentation Algorithm. Lecture Notes in Computer Science, 2016, , 418-427.	1.0	0
170	Ten Minutes Solar Irradiation Forecasting on Inclined Plane using Evolutionary Product Unit Neural Networks. , 2019, , .		0
171	Studying the Effect of Different \$\$L_p\$\$ Norms in the Context of Time Series Ordinal Classification. Lecture Notes in Computer Science, 2021, , 44-53.	1.0	0
172	Error-Correcting Output Codes in the Framework of Deep Ordinal Classification. Lecture Notes in Computer Science, 2021, , 3-13.	1.0	0
173	ReLU-Based Activations: Analysis andÂExperimental Study for Deep Learning. Lecture Notes in Computer Science, 2021, , 33-43.	1.0	0
174	Application of Artificial Intelligence to Predictive Microbiology. Food Additives, 2004, , 609-627.	0.1	0
175	Evolutionary q-Gaussian Radial Basis Functions for Improving Prediction Accuracy of Gene Classification Using Feature Selection. Lecture Notes in Computer Science, 2010, , 327-336.	1.0	0
176	Identification of Sound for Pass-by Noise Test in Vehicles Using Generalized Gaussian Radial Basis Function Neural Networks. Advances in Intelligent and Soft Computing, 2011, , 327-336.	0.2	0
177	Sound Source Identification in Vehicles Using a Combined Linear-Evolutionary Product Unit Neural Network Model. Advances in Intelligent and Soft Computing, 2011, , 379-386.	0.2	0
178	Combining Evolutionary Generalized Radial Basis Function and Logistic Regression Methods for Classification. Advances in Intelligent and Soft Computing, 2011, , 263-270.	0.2	0
179	Neural Network Ensembles to Determine Growth Multi-classes in Predictive Microbiology. Lecture Notes in Computer Science, 2012, , 308-318.	1.0	0
180	A System Learning User Preferences for Multiobjective Optimization of Facility Layouts. Advances in Intelligent Systems and Computing, 2013, , 43-52.	0.5	0

#	Article	IF	CITATIONS
181	Overcoming the Linearity of Ordinal Logistic Regression Adding Non-linear Covariates from Evolutionary Hybrid Neural Network Models. Lecture Notes in Computer Science, 2015, , 301-311.	1.0	0
182	Evolutionary Product Unit Logistic Regression: The Case of Agrarian Efficiency. Lecture Notes in Computer Science, 2015, , 92-102.	1.0	0
183	Strategic management practices in Central American micro family enterprises: The case of the commercial sector in El Salvador. Managerial and Decision Economics, 2022, 43, 3454-3465.	1.3	0