Carlos A Stortz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9365680/publications.pdf

Version: 2024-02-01

147566 161609 3,443 113 31 54 citations h-index g-index papers 113 113 113 3256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>d</scp> -Allose, a rare sugar. Synthesis of <scp>d</scp> -allopyranosyl acceptors from glucose, and their regioselectivity in glycosidation reactions. Organic and Biomolecular Chemistry, 2022, 20, 4589-4598.	1.5	4
2	Enzyme assisted extraction of pectin and inulin enriched fractions isolated from microwave treated <i>Cynara cardunculus</i> tissues. International Journal of Food Science and Technology, 2021, 56, 242-249.	1.3	5
3	Perennial halophyte Salicornia neei Lag.: Cell wall composition and functional properties of its biopolymers. Food Chemistry, 2021, 350, 128659.	4.2	3
4	Monthly fluctuations in the content and monosaccharide composition of fucoidan from Undaria pinnatifida sporophylls from northern Patagonia. Journal of Applied Phycology, 2021, 33, 2433-2441.	1.5	7
5	Novel gelling pectins from Zea mays husks' agro-industrial residue and their interaction with calcium and iron (II). Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100273.	1.5	3
6	Chemical structure and rheological studies of arabinoglucuronoxylans from the Cercidium praecox exudate brea gum. Carbohydrate Polymers, 2020, 228, 115388.	5.1	21
7	Rheology of partially and totally oxidized red seaweed galactans. Carbohydrate Polymers, 2020, 230, 115653.	5.1	7
8	A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. Frontiers in Plant Science, 2020, 11, 556312.	1.7	57
9	Experimental and theoretical study of the O3/O4 regioselectivity of glycosylation reactions of glucopyranosyl acceptors. Tetrahedron, 2020, 76, 131719.	1.0	2
10	Fucosylated chondroitin sulfate from the sea cucumber Hemioedema spectabilis: Structure and influence on cell adhesion and tubulogenesis. Carbohydrate Polymers, 2020, 234, 115895.	5.1	13
11	Exhaustive exploration of the conformational landscape of mono- and disubstituted five-membered rings by DFT and MP2 calculations. RSC Advances, 2019, 9, 24134-24145.	1.7	15
12	Fucoidans from the phaeophyta Scytosiphon lomentaria: Chemical analysis and antiviral activity of the galactofucan component. Carbohydrate Research, 2019, 478, 18-24.	1.1	44
13	Disaccharides obtained from carrageenans as potential antitumor agents. Scientific Reports, 2019, 9, 6654.	1.6	53
14	Husks of Zea mays as a potential source of biopolymers for food additives and materials' development. Heliyon, 2019, 5, e01313.	1.4	11
15	Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study. Beilstein Journal of Organic Chemistry, 2019, 15, 2982-2989.	1.3	6
16	Modified ribavirin analogues as antiviral agents against JunÃn virus. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 556-559.	1.0	16
17	Exhaustive rotamer search of the 4C1 conformation of \hat{l}_{\pm} - and \hat{l}_{\pm} -d-galactopyranose. Carbohydrate Research, 2017, 448, 136-147.	1.1	8
18	Seaweed Polysaccharides: Structure and Applications. , 2017, , 75-116.		14

#	Article	IF	CITATIONS
19	Alkylation of 2- and 3-alkoxycarbonyl-4-quinolinones. DFT study on the regioselectivity. Journal of Molecular Structure, 2017, 1128, 142-150.	1.8	4
20	Minor polysaccharidic constituents from the red seaweed Hypnea musciformis. Appearance of a novel branched uronic acid. Carbohydrate Polymers, 2017, 157, 156-166.	5.1	11
21	Free radical scavenging activity of extracts from seaweeds Macrocystis pyrifera and Undaria pinnatifida: applications as functional food in the diet of prawn Artemesia longinaris. Latin American Journal of Aquatic Research, 2017, 45, 104-112.	0.2	20
22	DFT/PCM theoretical study of the conversion of methyl 4-O-methyl- \hat{l}_{\pm} -d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts. Carbohydrate Research, 2016, 426, 15-25.	1.1	3
23	Partial and total C-6 oxidation of gelling carrageenans. Modulation of the antiviral activity with the anionic character. Carbohydrate Polymers, 2015, 128, 199-206.	5.1	33
24	Contributions of South American research centers to Carbohydrate Research. Carbohydrate Research, 2015, 403, 8-12.	1.1	0
25	Compositional Changes in Cell Wall Polysaccharides from Five Sweet Cherry (<i>Prunus avium</i> L.) Cultivars during On-Tree Ripening. Journal of Agricultural and Food Chemistry, 2014, 62, 12418-12427.	2.4	24
26	The system of fucoidans from the brown seaweed Dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydrate Polymers, 2014, 101, 804-811.	5.1	90
27	Chemical and rheological characterization of the carrageenans from Hypnea musciformis (Wulfen) Lamoroux. Carbohydrate Polymers, 2014, 102, 780-789.	5.1	39
28	Cherry fibers isolated from harvest residues as valuable dietary fiber and functional food ingredients. Journal of Food Engineering, 2014, 126, 149-155.	2.7	37
29	New insights into molecular recognition of 1,1-bisphosphonic acids by farnesyl diphosphate synthase. Bioorganic and Medicinal Chemistry, 2014, 22, 398-405.	1.4	21
30	A sulfated galactan from the mucilaginous sheath of the red filamentous alga Chroodactylon ornatum (Stylonematophyceae, Rhodophyta). Journal of Applied Phycology, 2014, 26, 1801-1811.	1.5	6
31	Publisher's Note. Carbohydrate Research, 2014, 390, 71-75.	1.1	0
32	Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages. Carbohydrate Polymers, 2013, 92, 830-841.	5.1	46
33	Differential O-3/O-4 selectivity in the glycosylation of N-dimethylmaleoyl-protected hexosamine acceptors: effect of a conformationally armed (superarmed) glycosyl donor. Carbohydrate Research, 2013, 380, 167-173.	1.1	6
34	Hydrolytic Stability of I-(+)-Ascorbic Acid in Low Methoxyl Pectin Films with Potential Antioxidant Activity at Food Interfaces. Food and Bioprocess Technology, 2013, 6, 186-197.	2.6	36
35	Developmental changes in cell wall polysaccharides from sweet cherry (Prunus avium L.) cultivars with contrasting firmness. Postharvest Biology and Technology, 2013, 84, 66-73.	2.9	29
36	Compositional changes in cell wall polysaccharides from apple fruit callus cultures modulated by different plant growth regulators. Plant Science, 2012, 185-186, 169-175.	1.7	12

#	Article	IF	CITATIONS
37	Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum. Carbohydrate Polymers, 2012, 89, 230-235.	5.1	39
38	Structural analysis of methyl 6-O-benzyl-2-deoxy-2-dimethylmaleimido-α-d-allopyranoside by X-ray crystallography, NMR, and QM calculations: hydrogen bonding and comparison of density functionals. Carbohydrate Research, 2012, 353, 79-85.	1.1	3
39	Changes on the cell wall composition of tree-ripened "Bartlett―pears (Pyrus communis L.). Postharvest Biology and Technology, 2012, 73, 72-79.	2.9	15
40	Compositional Changes in †Bartlett†Pear (Pyrus communis L.) Cell Wall Polysaccharides As Affected by Sunlight Conditions. Journal of Agricultural and Food Chemistry, 2011, 59, 12155-12162.	2.4	32
41	Regioselectivity of the glycosylation of N-dimethylmaleoyl-protected hexosamine acceptors. An experimental and DFT approach. Organic and Biomolecular Chemistry, 2011, 9, 3020.	1.5	12
42	A comparative study of the O-3 reactivity of isomeric N-dimethylmaleoyl-protected d-glucosamine and d-allosamine acceptors. Carbohydrate Research, 2011, 346, 569-576.	1.1	9
43	Xylogalactans from Lithothamnion heterocladum, a crustose member of the Corallinales (Rhodophyta). Carbohydrate Polymers, 2011, 84, 944-951.	5.1	21
44	Synthesis and conformational analysis of 1,2-cis fused bicyclic \hat{l} ±-d-galactofuranosyl thiocarbamate from per-O-tert-butyldimethylsilyl- \hat{l} 2-d-galactofuranosyl isothiocyanate. Carbohydrate Research, 2011, 346, 191-196.	1.1	6
45	Conformational pathways of simple sixâ€membered rings. Journal of Physical Organic Chemistry, 2010, 23, 1173-1186.	0.9	29
46	DIFFERENCES IN POLYSACCHARIDE STRUCTURE BETWEEN CALCIFIED AND UNCALCIFIED SEGMENTS IN THE CORALLINE <i>CORALLINE <i>CORALLINE <i>CORALLINE SUP>1. Journal of Phycology, 2010, 46, 507-515.</i></i></i>	1.0	30
47	Compositional Changes in Cell Wall Polysaccharides from Japanese Plum (Prunus salicina Lindl.) during Growth and On-Tree Ripening. Journal of Agricultural and Food Chemistry, 2010, 58, 2562-2570.	2.4	37
48	Characterization of Acid-Extracted Pectin-Enriched Products Obtained from Red Beet (<i>Beta) Tj ETQq0 0 0 rgBT Journal of Agricultural and Food Chemistry, 2010, 58, 3793-3800.</i>	/Overlock 2.4	10 Tf 50 30 27
49	Antiretroviral activity of fucoidans extracted from the brown seaweed <i>Adenocystis utricularis </i>). Phytotherapy Research, 2009, 23, 707-712.	2.8	96
50	Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). Journal of Food Engineering, 2009, 93, 293-301.	2.7	22
51	Comparison of different force fields for the study of disaccharides. Carbohydrate Research, 2009, 344, 2217-2228.	1.1	87
52	Evaluation of Density Functionals and Basis Sets for Carbohydrates. Journal of Chemical Theory and Computation, 2009, 5, 679-692.	2.3	183
53	DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps. Carbohydrate Research, 2008, 343, 2292-2298.	1.1	13
54	The system of xylogalactans from the red seaweed Jania rubens (Corallinales, Rhodophyta). Carbohydrate Research, 2008, 343, 2613-2622.	1.1	38

#	Article	IF	CITATIONS
55	Conformational and electronic effects on the regioselectivity of the glycosylation of different anomers of N-dimethylmaleoyl-protected glucosamine acceptors. Organic and Biomolecular Chemistry, 2008, 6, 554-561.	1.5	13
56	Disaccharide conformational maps: adiabaticity in analogues with variable ring shapes. Molecular Simulation, 2008, 34, 373-389.	0.9	28
57	Polysaccharide localization in the sporophyte cell wall of Adenocystis utricularis (Ectocarpales s.l.,) Tj ETQq1 10).784314 r 0.6	gBT ₇ /Overloc
58	Microwave-assisted desulfation of sulfated polysaccharides. Carbohydrate Polymers, 2007, 69, 742-747.	5.1	60
59	Differential O-3/O-4 regioselectivity in the glycosylation of \hat{l}^{\pm} and \hat{l}^{2} anomers of 6-O-substituted N-dimethylmaleoyl-protected d-glucosamine acceptors. Carbohydrate Research, 2007, 342, 2522-2536.	1.1	23
60	Matrix-assisted ultraviolet laser desorption/ionization time-of-flight (UV-MALDI-TOF) mass spectra of N-acylated and N,O-acylated glycosylamines. Carbohydrate Research, 2007, 342, 2567-2574.	1.1	3
61	Additive effects in the modeling of oligosaccharides with mm3 at high dielectric constants: an approach to the †multiple minimum problem'. Carbohydrate Research, 2006, 341, 663-671.	1.1	9
62	A comparative study of the influence of some protecting groups on the reactivity of d-glucosamine acceptors with a galactofuranosyl donor. Carbohydrate Research, 2006, 341, 1096-1104.	1.1	21
63	mm3 Potential energy surfaces of trisaccharide models of \hat{l} »-, \hat{l} ¼-, and \hat{l} ½-carrageenans. Carbohydrate Research, 2006, 341, 2531-2542.	1.1	12
64	MM3 Potential energy surfaces of \hat{l}^2 -4-linked mannobiose and mannotriose at different dielectric constants. Arkivoc, 2006, 2005, 22-35.	0.3	4
65	Microwave-assisted alkaline modification of red seaweed galactans. Carbohydrate Polymers, 2005, 62, 187-191.	5.1	40
66	Modeling ring puckering in strained systems: application to 3,6-anhydroglycosides. Carbohydrate Research, 2005, 340, 2030-2038.	1.1	10
67	Comparative performance of MM3(92) and two TINKER? MM3 versions for the modeling of carbohydrates. Journal of Computational Chemistry, 2005, 26, 471-483.	1.5	35
68	Chemical and biochemical changes of pumpkin (Cucumis moschata, Duch) tissue in relation to osmotic stress. Journal of the Science of Food and Agriculture, 2005, 85, 1852-1860.	1.7	17
69	mm3 Potential energy surfaces of α-3-linked l-fucobiose and fucotriose and their sulfated counterparts. Carbohydrate Research, 2004, 339, 2381-2390.	1.1	4
70	Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. International Journal of Biological Macromolecules, 2004, 34, 63-71.	3.6	196
71	MM3 potential energy surfaces of trisaccharides. II. Carrageenan models containing 3,6-anhydro-D-galactose. Biopolymers, 2003, 70, 227-239.	1.2	8
72	Determination of the configuration of 3,6-anhydrogalactose and cyclizable α-galactose 6-sulfate units in red seaweed galactans. Carbohydrate Research, 2003, 338, 2111-2118.	1.1	54

#	Article	IF	CITATIONS
73	Depicting the mm3 potential energy surfaces of trisaccharides by single contour maps: application to \hat{l}^2 -cellotriose and \hat{l}^2 -maltotriose. Carbohydrate Research, 2003, 338, 95-107.	1.1	15
74	Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydrate Research, 2003, 338, 153-165.	1.1	396
75	mm3 Potential energy surfaces of the 2-linked glucosyl trisaccharides \hat{l}_{\pm} -kojitriose and \hat{l}^{2} -sophorotriose. Carbohydrate Research, 2003, 338, 1679-1689.	1.1	10
76	2D―and 3D―Potential Energy Surfaces of βâ€(1â†'3)â€Linked Disaccharides Calculated with the MM3 Force†Journal of Carbohydrate Chemistry, 2003, 22, 217-239.	Field. 0.4	6
77	POTENTIAL ENERGY SURFACES OF \hat{i} ±- $(1\hat{a}$ †'3)-LINKED DISACCHARIDES CALCULATED WITH THE MM3 FORCE-FIELD Journal of Carbohydrate Chemistry, 2002, 21, 355-371.). 0.4	10
78	Potential energy surfaces of carrageenan models: carrabiose, $\hat{1}^2$ -(1 $\hat{1}$ 7'4)-linked d-galactobiose, and their sulfated derivatives. Carbohydrate Research, 2002, 337, 2311-2323.	1.1	22
79	NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. Carbohydrate Research, 2002, 337, 255-263.	1.1	50
80	Disaccharide conformational maps: 3D contours or 2D plots?. Carbohydrate Research, 2002, 337, 1861-1871.	1.1	15
81	Antifungal diastereomeric furanones from Mutisia friesiana: structural determination and conformational analysis. Tetrahedron: Asymmetry, 2001, 12, 991-998.	1.8	10
82	Alkali Treatment of the Polysaccharides from the Cystocarpic Stage from Iridaea Undulosa. Molecules, 2000, 5, 541-542.	1.7	2
83	The 75% Isopropanol-Soluble Polysaccharides from the Endosperm of the Legume Seed of Gleditsia Triacanthos. Molecules, 2000, 5, 543-544.	1.7	3
84	Conformational Analysis of Neocarrabiose and its Sulfated and/or Pyruvylated Derivatives using the MM3 Force-Field. Journal of Carbohydrate Chemistry, 2000, 19, 1115-1130.	0.4	21
85	Studies on the skeletal cell wall of the cystocarpic stage of the red seaweed Iridaea undulosa B International Journal of Biological Macromolecules, 2000, 27, 21-27.	3.6	17
86	Configurational assignments of diastereomeric γ-lactones using vicinal H–H NMR coupling constants and molecular modelling â€. Perkin Transactions II RSC, 2000, , 1832-1836.	1.1	7
87	Disaccharide conformational maps: how adiabatic is an adiabatic map?. Carbohydrate Research, 1999, 322, 77-86.	1.1	59
88	A Revised Structure for (\hat{a} ')-Dihydropertusaric Acid, a \hat{l} 3-Butyrolactone Acid from the LichenPunctelia microsticta. Journal of Natural Products, 1999, 62, 1565-1567.	1.5	45
89	Conformational Analysis of Sulfated \hat{l} ±-($1\hat{a}$ †'3)-Linked D-Galactobioses Using the Mm3 Force-Field. Journal of Carbohydrate Chemistry, 1998, 17, 1405-1419.	0.4	19
90	Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. International Journal of Biological Macromolecules, 1997, 20, 97-105.	3.6	199

#	Article	IF	CITATIONS
91	The system of agaroids and carrageenans from the soluble fraction of the tetrasporic stage of the red seaweed Iridaea undulosa. Carbohydrate Polymers, 1997, 34, 61-65.	5.1	27
92	Separation and quantitation of enantiomeric galactoses and their mono-O-methylethers as their diastereomeric acetylated 1-deoxy-1-(2-hydroxypropylamino) alditols. Carbohydrate Research, 1995, 269, 333-341.	1.1	82
93	Use of a General Purpose Force-Field (MM2) for the Conformational Analysis of the Disaccharide α-D-Galactopyranosyl-(1 â†' 3)-β-D-Galactopyranose. Journal of Carbohydrate Chemistry, 1994, 13, 235-247.	0.4	21
94	Separation and identification of partially ethylated galactoses as their acetylated aldononitriles and alditols by capillary gas chromatography and mass spectrometry. Journal of Chromatography A, 1994, 662, 293-299.	1.8	14
95	High-field NMR spectroscopy of cystocarpic and tetrasporic carrageenans from Iridaea undulosa. Carbohydrate Research, 1994, 261, 317-326.	1.1	63
96	Cell walls of the cotyledons of three Sophora species. Phytochemistry, 1994, 37, 317-325.	1.4	0
97	Structure of the â€~corallinans' — sulfated xylogalactans from Corallina officinalis. International Journal of Biological Macromolecules, 1994, 16, 93-97.	3.6	32
98	The systems of carrageenans from cystocarpic and tetrasporic stages from Iridaea undulosa: fractionation with potassium chloride and methylation analysis of the fractions. Carbohydrate Research, 1993, 242, 217-227.	1.1	62
99	Methylated, sulphated xylogalactans from the red seaweed Corallina officinalis. Phytochemistry, 1992, 31, 3897-3900.	1.4	27
100	The 13C NMR spectroscopy of carrageenans: calculation of chemical shifts and computer-aided structural determination. Carbohydrate Polymers, 1992, 18, 237-242.	5.1	39
101	Room temperature, low-field 13C-n.m.r. spectra of degraded carrageenans. Part II. On the specificity of the autohydrolysis reaction in kappa/iota and mu/nu structures. International Journal of Biological Macromolecules, 1991, 13, 337-340.	3.6	8
102	Room temperature, low-field 13C-n.m.r. spectra of degraded kappa/iota carrageenans. International Journal of Biological Macromolecules, 1991, 13, 101-104.	3.6	13
103	Polysaccharides from Peptostreptococcus anaerobius and structure of the species-specific antigen. Carbohydrate Research, 1990, 207, 101-120.	1.1	8
104	Cell-wall glucans of Cryptococcus neoformans CAP 67. Carbohydrate Research, 1990, 198, 23-38.	1.1	119
105	The λ-components of the "intermediate―fractions of the carrageenan form Iridaea undulosa. Carbohydrate Research, 1988, 172, 139-146.	1.1	10
106	The High-Resolution $<$ sup $>$ 1 $<$ /sup $>$ H NMR Spectra and Conformations of N-Acetyl-Î \pm -D-Galactopyranosylamine Peracetate and 1,1-Bis(Acetamido)-1-Deoxy-D-Glucitol Peracetate in Aqueous Medium. Journal of Carbohydrate Chemistry, 1987, 6, 515-521.	0.4	0
107	Specific fragmentation of carrageenans. Carbohydrate Research, 1987, 166, 317-323.	1.1	11
108	The potassium chloride-soluble carrageenans of the red seaweed Iridaea undulosa B. Carbohydrate Research, 1986, 145, 219-235.	1.1	15

#	Article	IF	CITATIONS
109	Influence of benzoylation on the mass spectra of acylated aldosylamines. Carbohydrate Research, 1984, 133, 199-205.	1.1	1
110	The mass spectra of acetylated and propanoylated aldopyranosylamines. Carbohydrate Research, 1983, 117, 39-53.	1.1	6
111	The mass spectra of acetylated and propanoylated aldofuranosylamines. Carbohydrate Research, 1983, 122, 49-57.	1.1	2
112	Separation and identification of O-acetyl-O-methyl-galactononitriles by gas-liquid chromatography and mass spectrometry. Carbohydrate Research, 1982, 111, 31-39.	1.1	28
113	Mixed approach on Chroodactylon ornatum (Stylonematophyceae, Rhodophyta) tolerance to hyposalinity: growth, photosynthetic performance and carbohydrate analysis. Phycologia, 0, , 1-11.	0.6	0