
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9365457/publications.pdf Version: 2024-02-01

ANKE RECKED

#	Article	IF	CITATIONS
1	The Composite Genome of the Legume Symbiont Sinorhizobium meliloti. Science, 2001, 293, 668-672.	6.0	1,098
2	Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza. Plant Physiology, 2005, 137, 1283-1301.	2.3	322
3	Expression Profiling in Medicago truncatula Identifies More Than 750 Genes Differentially Expressed during Nodulation, Including Many Potential Regulators of the Symbiotic Program. Plant Physiology, 2004, 136, 3159-3176.	2.3	269
4	Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. nov. based on complete genome sequence comparisons. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1786-1801.	0.8	265
5	The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 2008, 134, 33-45.	1.9	238
6	Global Changes in Gene Expression in Sinorhizobium meliloti 1021 under Microoxic and Symbiotic Conditions. Molecular Plant-Microbe Interactions, 2004, 17, 292-303.	1.4	230
7	<i>Xanthomonas campestris</i> pv. campestris <i>gum</i> Mutants: Effects on Xanthan Biosynthesis and Plant Virulence. Journal of Bacteriology, 1998, 180, 1607-1617.	1.0	221
8	Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti1021. BMC Genomics, 2013, 14, 156.	1.2	163
9	Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiology, 2012, 12, 116.	1.3	151
10	Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen <i>Xanthomonas</i> . FEMS Microbiology Reviews, 2020, 44, 1-32.	3.9	148
11	Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages inMedicago truncatulaseeds. Plant Journal, 2006, 47, 735-750.	2.8	142
12	New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene, 1995, 162, 37-39.	1.0	141
13	Linking Plant Nutritional Status to Plant-Microbe Interactions. PLoS ONE, 2013, 8, e68555.	1.1	138
14	Transcriptome Profiling Reveals the Importance of Plasmid pSymB for Osmoadaptation of Sinorhizobium meliloti. Journal of Bacteriology, 2006, 188, 7617-7625.	1.0	129
15	Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). BMC Genomics, 2016, 17, 629.	1.2	125
16	The LuxR Homolog ExpR, in Combination with the Sin Quorum Sensing System, Plays a Central Role in Sinorhizobium meliloti Gene Expression. Journal of Bacteriology, 2004, 186, 5460-5472.	1.0	123
17	Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Molecular Microbiology, 1995, 16, 191-204.	1.2	106
18	Sinorhizobium meliloti ExoR and ExoS Proteins Regulate both Succinoglycan and Flagellum Production. Journal of Bacteriology, 2004, 186, 6042-6049.	1.0	106

#	Article	IF	CITATIONS
19	Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte <i>Azoarcus</i> sp. strain BH72. Environmental Microbiology, 2012, 14, 2775-2787.	1.8	105
20	<i>Sinorhizobium meliloti</i> Regulator MucR Couples Exopolysaccharide Synthesis and Motility. Molecular Plant-Microbe Interactions, 2008, 21, 1498-1509.	1.4	104
21	A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics, 2010, 11, 245.	1.2	104
22	Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. Journal of Biotechnology, 2003, 106, 255-268.	1.9	103
23	Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. Journal of Biotechnology, 2004, 108, 95-113.	1.9	103
24	Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Molecular Genetics and Genomics, 1993, 241-241, 367-379.	2.4	102
25	Recent Advances in Studies on Structure and Symbiosis-Related Function of Rhizobial K-Antigens and Lipopolysaccharides. Molecular Plant-Microbe Interactions, 2005, 18, 899-905.	1.4	92
26	Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood, 2010, 116, 3564-3571.	0.6	90
27	Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. Journal of Biotechnology, 2003, 106, 269-286.	1.9	85
28	Construction of a Large Signature-Tagged Mini-Tn5 Transposon Library and Its Application to Mutagenesis of Sinorhizobium meliloti. Applied and Environmental Microbiology, 2006, 72, 4329-4337.	1.4	84
29	Specific binding of the regulatory protein ExpG to promoter regions of the galactoglucan biosynthesis gene cluster of Sinorhizobium meliloti - a combined molecular biology and force spectroscopy investigation. Journal of Structural Biology, 2003, 143, 145-152.	1.3	82
30	The Molecular Weight Distribution of Succinoglycan Produced by Sinorhizobium meliloti Is Influenced by Specific Tyrosine Phosphorylation and ATPase Activity of the Cytoplasmic Domain of the ExoP Protein. Journal of Bacteriology, 2001, 183, 5163-5170.	1.0	78
31	Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. Microbiology (United Kingdom), 1999, 145, 603-611.	0.7	75
32	Analysis of the <i>Rhizobium meliloti</i> Genes <i>exo</i> U, <i>exo</i> V, <i>exo</i> W, <i>exo</i> T, and <i>exo</i> I Involved in Exopolysaccharide Biosynthesis and Nodule Invasion: <i>exo</i> U and <i>exo</i> W Probably Encode Glucosyltransferases. Molecular Plant-Microbe Interactions, 1993, 6, 735.	1.4	74
33	The Sinorhizobium meliloti fur Gene Regulates, with Dependence on Mn(II), Transcription of the sitABCD Operon, Encoding a Metal-Type Transporter. Journal of Bacteriology, 2004, 186, 3609-3620.	1.0	73
34	Striking Complexity of Lipopolysaccharide Defects in a Collection of Sinorhizobium meliloti Mutants. Journal of Bacteriology, 2003, 185, 3853-3862.	1.0	72
35	Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood, 2012, 119, 2346-2357.	0.6	72
36	Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Molecular Genetics and Genomics, 1995, 249, 487-497.	2.4	70

ANKE BECKER

#	Article	IF	CITATIONS
37	The <scp>DivJ</scp> , <scp>CbrA</scp> and <scp>PleC</scp> system controls <scp>DivK</scp> phosphorylation and symbiosis in <i><scp>S</scp>inorhizobium meliloti</i> . Molecular Microbiology, 2013, 90, 54-71.	1.2	68
38	Competitive and Cooperative Effects in Quorum-Sensing-Regulated Galactoglucan Biosynthesis in <i>Sinorhizobium meliloti</i> . Journal of Bacteriology, 2008, 190, 5308-5317.	1.0	67
39	Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology, 2011, 155, 11-19.	1.9	67
40	Small RNA sX13: A Multifaceted Regulator of Virulence in the Plant Pathogen Xanthomonas. PLoS Pathogens, 2013, 9, e1003626.	2.1	67
41	Analysis of the Rhizobium meliloti exoH/exoK/exoL fragment: ExoK shows homology to excreted endo-l²-1,3-1,4-glucanases and ExoH resembles membrane proteins. Molecular Genetics and Genomics, 1993, 238-238, 145-154.	2.4	66
42	Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes. FEMS Microbiology Letters, 2011, 319, 160-168.	0.7	65
43	Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in <i>Sinorhizobium meliloti</i> . RNA Biology, 2014, 11, 563-579.	1.5	65
44	Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome. PLoS ONE, 2011, 6, e18441.	1.1	65
45	Two New Sinorhizobium meliloti LysR-Type Transcriptional Regulators Required for Nodulation. Journal of Bacteriology, 2005, 187, 4562-4572.	1.0	64
46	Identification of Genes Relevant to Symbiosis and Competitiveness in <i>Sinorhizobium meliloti</i> Using Signature-Tagged Mutants. Molecular Plant-Microbe Interactions, 2008, 21, 219-231.	1.4	63
47	Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics, 2008, 9, 416.	1.2	58
48	AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4822-E4831.	3.3	58
49	Sinorhizobium meliloti acpXL Mutant Lacks the C28 Hydroxylated Fatty Acid Moiety of Lipid A and Does Not Express a Slow Migrating Form of Lipopolysaccharide. Journal of Biological Chemistry, 2003, 278, 12946-12954.	1.6	56
50	The <i>Sinorhizobium fredii</i> HH103 Genome: A Comparative Analysis With <i>S. fredii</i> Strains Differing in Their Symbiotic Behavior With Soybean. Molecular Plant-Microbe Interactions, 2015, 28, 811-824.	1.4	56
51	Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti. Journal of Bacteriology, 2016, 198, 521-535.	1.0	56
52	The Role of Microbial Surface Polysaccharides in the Rhizobium-Legume Interaction. Sub-Cellular Biochemistry, 1998, 29, 73-116.	1.0	55
53	Genome Sequence of the Soybean Symbiont Sinorhizobium fredii HH103. Journal of Bacteriology, 2012, 194, 1617-1618.	1.0	54
54	Novel <i>Sinorhizobium meliloti</i> quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability. Molecular Microbiology, 2009, 74, 1238-1256.	1.2	53

#	Article	IF	CITATIONS
55	Fine-Tuning of Galactoglucan Biosynthesis in <i>Sinorhizobium meliloti</i> by Differential WggR (ExpG)-, PhoB-, and MucR-Dependent Regulation of Two Promoters. Journal of Bacteriology, 2008, 190, 3456-3466.	1.0	52
56	ppGpp in <i>Sinorhizobium meliloti</i> : biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome. Molecular Microbiology, 2011, 81, 1233-1254.	1.2	52
57	Single-Molecule Experiments in Synthetic Biology: An Approach to the Affinity Ranking of DNA-Binding Peptides. Angewandte Chemie - International Edition, 2005, 44, 3921-3924.	7.2	51
58	Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology, 2015, 6, 687.	1.5	51
59	A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression. PLoS Genetics, 2015, 11, e1005153.	1.5	51
60	Comparative Genome Biology of a Serogroup B Carriage and Disease Strain Supports a Polygenic Nature of Meningococcal Virulence. Journal of Bacteriology, 2010, 192, 5363-5377.	1.0	50
61	Development of bioinformatic tools to support EST-sequencing, in silico- and microarray-based transcriptome profiling in mycorrhizal symbioses. Phytochemistry, 2007, 68, 19-32.	1.4	49
62	Phenotypic Heterogeneity in Bacterial Quorum Sensing Systems. Journal of Molecular Biology, 2019, 431, 4530-4546.	2.0	49
63	Temporal Expression Program of Quorum Sensing-Based Transcription Regulation in Sinorhizobium meliloti. Journal of Bacteriology, 2013, 195, 3224-3236.	1.0	48
64	Transcript Profiling Reveals New Insights into the Acclimation of the Mesophilic Fresh-Water Cyanobacterium <i>Synechococcus elongatus</i> PCC 7942 to Iron Starvation Â. Plant Physiology, 2008, 147, 747-763.	2.3	47
65	Quantitative Proteomic Analysis of the Hfq-Regulon in Sinorhizobium meliloti 2011. PLoS ONE, 2012, 7, e48494.	1.1	46
66	Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10702-10707.	3.3	45
67	Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics, 2005, 6, 158.	1.2	44
68	Effector-Stimulated Single Molecule Protein-DNA Interactions of a Quorum-Sensing System in Sinorhizobium meliloti. Biophysical Journal, 2007, 92, 4391-4400.	0.2	44
69	Riboregulation in plant-associated α-proteobacteria. RNA Biology, 2014, 11, 550-562.	1.5	43
70	Detailed studies of the binding mechanism of the Sinorhizobium meliloti transcriptional activator ExpG to DNA. Microbiology (United Kingdom), 2005, 151, 259-268.	0.7	41
71	A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. Journal of Biotechnology, 2009, 140, 45-50.	1.9	38
72	Spatiotemporal choreography of chromosome and megaplasmids in the <i>Sinorhizobium meliloti</i> cell cycle. Molecular Microbiology, 2016, 100, 808-823.	1.2	37

#	Article	IF	CITATIONS
73	Identification of Xanthomonas campestris pv. campestris galactose utilization genes from transcriptome data. Journal of Biotechnology, 2008, 135, 309-317.	1.9	36
74	Insights into the Extracytoplasmic Stress Response of <i>Xanthomonas campestris</i> pv. <i>campestris</i> : Role and Regulation of σ ^E -Dependent Activity. Journal of Bacteriology, 2011, 193, 246-264.	1.0	36
75	Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochemical and Biophysical Research Communications, 2009, 390, 331-336.	1.0	35
76	RNase E Affects the Expression of the Acyl-Homoserine Lactone Synthase Gene <i>sinl</i> in Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 1435-1447.	1.0	34
77	Specificity traits consistent with legumeâ€rhizobia coevolution displayed by <i>Ensifer meliloti</i> rhizosphere colonization. Environmental Microbiology, 2017, 19, 3423-3438.	1.8	33
78	Expansion and re-classification of the extracytoplasmic function (ECF) $\ddot{l}f$ factor family. Nucleic Acids Research, 2021, 49, 986-1005.	6.5	32
79	Rhizobium-Initiated Rice Growth Inhibition Caused by Nitric Oxide Accumulation. Molecular Plant-Microbe Interactions, 2007, 20, 283-292.	1.4	30
80	Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics, 2019, 111, 913-920.	1.3	30
81	Conservation and Occurrence of Trans-Encoded sRNAs in the Rhizobiales. Genes, 2011, 2, 925-956.	1.0	29
82	A Family of Single Copy <i>repABC</i> -Type Shuttle Vectors Stably Maintained in the Alpha-Proteobacterium <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2017, 6, 968-984.	1.9	29
83	Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Research, 2017, 45, 1371-1391.	6.5	29
84	Two-step chromosome segregation in the stalked budding bacterium Hyphomonas neptunium. Nature Communications, 2019, 10, 3290.	5.8	29
85	Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leukemia Research, 2011, 35, 620-625.	0.4	28
86	RhizoRegNet—A database of rhizobial transcription factors and regulatory networks. Journal of Biotechnology, 2011, 155, 127-134.	1.9	27
87	Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie, 2015, 117, 129-137.	1.3	27
88	A conserved αâ€proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environmental Microbiology, 2017, 19, 2661-2680.	1.8	27
89	Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. Journal of Biotechnology, 2015, 198, 3-14.	1.9	25
90	Reverse Engineering of an Affinity-Switchable Molecular Interaction Characterized by Atomic Force Microscopy Single-Molecule Force Spectroscopy. Langmuir, 2008, 24, 1365-1370.	1.6	24

#	Article	IF	CITATIONS
91	Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2018, 7, 2365-2378.	1.9	24
92	Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 187-90.	1.0	24
93	Insights into the Noncoding RNome of Nitrogen-Fixing Endosymbiotic α-Proteobacteria. Molecular Plant-Microbe Interactions, 2013, 26, 160-167.	1.4	23
94	Transcriptional reprogramming and phenotypical changes associated with growth of <i>Xanthomonas campestris</i> pv. <i>campestris</i> in cabbage xylem sap. FEMS Microbiology Ecology, 2014, 89, 527-541.	1.3	23
95	Antisense transcription of symbiotic genes in Sinorhizobium meliloti. Symbiosis, 2015, 67, 55-67.	1.2	23
96	Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion. PLoS Computational Biology, 2020, 16, e1008179.	1.5	23
97	MESA: automated assessment of synthetic DNA fragments and simulation of DNA synthesis, storage, sequencing and PCR errors. Bioinformatics, 2020, 36, 3322-3326.	1.8	22
98	Evidence for Escherichia coli Diguanylate Cyclase DgcZ Interlinking Surface Sensing and Adhesion via Multiple Regulatory Routes. Journal of Bacteriology, 2016, 198, 2524-2535.	1.0	21
99	Unipolar Peptidoglycan Synthesis in the <i>Rhizobiales</i> Requires an Essential Class A Penicillin-Binding Protein. MBio, 2021, 12, e0234621.	1.8	21
100	Cyclic mononucleotide- and Clr-dependent gene regulation in Sinorhizobium meliloti. Microbiology (United Kingdom), 2016, 162, 1840-1856.	0.7	21
101	The Gellan Gum Biosynthetic Genes <i>gelC</i> and <i>gelE</i> Encode Two Separate Polypeptides Homologous to the Activator and the Kinase Domains of Tyrosine Autokinases. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 43-57.	1.0	20
102	Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol, the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression. Journal of Biotechnology, 2006, 127, 21-33.	1.9	20
103	Environmental Factors Affecting the Expression of pilAB as Well as the Proteome and Transcriptome of the Grass Endophyte Azoarcus sp. Strain BH72. PLoS ONE, 2012, 7, e30421.	1.1	20
104	Regulation of Polyhydroxybutyrate Accumulation in Sinorhizobium meliloti by the <i>Trans</i> -Encoded Small RNA MmgR. Journal of Bacteriology, 2017, 199, .	1.0	20
105	Design and Control of Extrachromosomal Elements in <i>Methylorubrum extorquens</i> AM1. ACS Synthetic Biology, 2019, 8, 2451-2456.	1.9	20
106	Genome-enabled determination of amino acid biosynthesis in Xanthomonas campestris pv. campestris and identification of biosynthetic pathways for alanine, glycine, and isoleucine by 13C-isotopologue profiling. Molecular Genetics and Genomics, 2011, 286, 247-59.	1.0	19
107	Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination. Journal of Biotechnology, 2016, 233, 160-170.	1.9	19
108	A Bifunctional UDP-Sugar 4-Epimerase Supports Biosynthesis of Multiple Cell Surface Polysaccharides in Sinorhizobium meliloti. Journal of Bacteriology, 2019, 201, .	1.0	19

ANKE BECKER

#	Article	IF	CITATIONS
109	Four Promoters Subject to Regulation by ExoR and PhoB Direct Transcription of the <i>Sinorhizobium melilotiexoYFQ</i> Operon Involved in the Biosynthesis of Succinoglycan. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 115-132.	1.0	18
110	Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11. Journal of Biotechnology, 2008, 136, 31-37.	1.9	18
111	Analysis of the interaction of Clavibacter michiganensis subsp. michiganensis with its host plant tomato by genome-wide expression profiling. Journal of Biotechnology, 2012, 160, 42-54.	1.9	18
112	Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. MBio, 2020, 11, .	1.8	18
113	Probing DNA–peptide interaction forces at the single-molecule level. Journal of Peptide Science, 2006, 12, 836-842.	0.8	17
114	Production of Succinoglycan Polymer in <i>Sinorhizobium meliloti</i> Is Affected by SMb21506 and Requires the N-terminal Domain of ExoP. Molecular Plant-Microbe Interactions, 2009, 22, 1656-1668.	1.4	17
115	Singleâ€Molecule Experiments to Elucidate the Minimal Requirement for DNA Recognition by Transcription Factor Epitopes. Small, 2009, 5, 484-495.	5.2	16
116	Seven-transmembrane receptor protein RgsP and cell wall-binding protein RgsM promote unipolar growth in Rhizobiales. PLoS Genetics, 2018, 14, e1007594.	1.5	16
117	NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Communications Biology, 2022, 5, 265.	2.0	16
118	ZomB is essential for flagellar motor reversals in <i>Shewanella putrefaciens</i> and <i>Vibrio parahaemolyticus</i> . Molecular Microbiology, 2018, 109, 694-709.	1.2	15
119	Quorum sensing restrains growth and is rapidly inactivated during domestication of <scp><i>S</i></scp> <i>i>s</i> , 2015, 7, 373-382.	1.0	14
120	Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence. BMC Genomics, 2017, 18, 282.	1.2	14
121	Genomic Locus of a <i>Penicillium crustosum</i> Pigment as an Integration Site for Secondary Metabolite Gene Expression. ACS Chemical Biology, 2019, 14, 1227-1234.	1.6	13
122	Cyclic di-GMP signaling controlling the free-living lifestyle of alpha-proteobacterial rhizobia. Biological Chemistry, 2020, 401, 1335-1348.	1.2	13
123	An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA. Frontiers in Microbiology, 2018, 9, 763.	1.5	12
124	RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. Microbiology (United Kingdom), 2017, 163, 570-583.	0.7	11
125	Space- and time-resolved protein dynamics in single bacterial cells observed on a chip. Journal of Biotechnology, 2010, 149, 280-288.	1.9	10
126	Insights into the genome of the xanthan-producing phytopathogen Xanthomonas arboricola pv. pruni 109 by comparative genomic hybridization. Journal of Biotechnology, 2011, 155, 40-49.	1.9	10

#	Article	IF	CITATIONS
127	The two-component system ActJK is involved in acid stress tolerance and symbiosis in Sinorhizobium meliloti. Journal of Biotechnology, 2021, 329, 80-91.	1.9	10
128	Frequency modulation of a bacterial quorum sensing response. Nature Communications, 2022, 13, 2772.	5.8	10
129	Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in <i>Synechocystis </i> sp. PCC 6803. Physiologia Plantarum, 2008, 133, 525-543.	2.6	9
130	Monitoring succinoglycan production in single Sinorhizobium meliloti cells by Calcofluor white M2R staining and time-lapse microscopy. Carbohydrate Polymers, 2018, 181, 918-922.	5.1	8
131	CRP-Like Transcriptional Regulator MrpC Curbs c-di-GMP and 3′,3′-cGAMP Nucleotide Levels during Development in Myxococcus xanthus. MBio, 2022, 13, e0004422.	1.8	8
132	A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy. Frontiers in Bioengineering and Biotechnology, 2018, 6, 17.	2.0	7
133	Stable inheritance of Sinorhizobium meliloti cell growth polarity requires an FtsN-like protein and an amidase. Nature Communications, 2021, 12, 545.	5.8	7
134	New SigD-regulated genes identified in the rhizobacterium <i>Bacillus amyloliquefaciens</i> FZB42. Biology Open, 2016, 5, 1776-1783.	0.6	6
135	Massive parallel insertion site sequencing of an arrayed Sinorhizobium meliloti signature-tagged mini-Tn 5 transposon mutant library. Journal of Biotechnology, 2017, 257, 9-12.	1.9	5
136	ViCAR: An Adaptive and Landmark-Free Registration of Time Lapse Image Data from Microfluidics Experiments. Frontiers in Genetics, 2017, 8, 69.	1.1	4
137	Front-propagation in bacterial inter-colony communication. Chaos, 2018, 28, 106316.	1.0	4
138	Sinorhizobium meliloti low molecular mass phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis. Microbiology (United Kingdom), 2016, 162, 552-563.	0.7	4
139	Functional Genomics of Rhizobia. Microbiology Monographs, 2007, , 71-100.	0.3	3
140	Classic Spotlight: Bacteroids—Views of an Enigmatic Bacterial State in Root Nodule Symbiosis through the Centuries. Journal of Bacteriology, 2017, 199, .	1.0	3
141	A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4 NO 3 -Induced Inhibition of Nodulation. Applied and Environmental Microbiology, 2021, 87, .	1.4	3
142	Orientation-defined alignment and immobilization of DNA between specific surfaces. Nanotechnology, 2011, 22, 145301.	1.3	2
143	Classic Spotlight: Hfq, from a Specific Host Factor for Phage Replication to a Global Player in Riboregulation. Journal of Bacteriology, 2016, 198, 2279-2280.	1.0	2
144	Divergent genes in potential inoculant <i>Sinorhizobium</i> strains are related to DNA replication, recombination, and repair. Journal of Basic Microbiology, 2016, 56, 680-685.	1.8	2

#	Article	IF	CITATIONS
145	Gene regulation by extracytoplasmic function (ECF) σ factors in alpha-rhizobia. Advances in Botanical Research, 2020, 94, 289-321.	0.5	2
146	Synthetic biology changing the face of biotechnology. Journal of Biotechnology, 2014, 169, iii.	1.9	1
147	Microarrays as Tools to Decipher Transcriptomes in Symbiotic Interactions. , 0, , 137-162.		0
148	Classic Spotlight: When Phenotypic Heterogeneity Met Carbon Catabolite Repression. Journal of Bacteriology, 2016, 198, 878-878.	1.0	0
149	Classic Spotlight: Selected Highlights from the First 100 Years of the <i>Journal of Bacteriology</i> . Journal of Bacteriology, 2017, 199, .	1.0	0