
John J Kopchick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9365121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Growth Parameters and Life Span of GHR/BP Gene-Disrupted Mice ¹ . Endocrinology, 2000, 141, 2608-2613.	1.4	551
2	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	3.0	481
3	Deletion, But Not Antagonism, of the Mouse Growth Hormone Receptor Results in Severely Decreased Body Weights, Insulin, and Insulin-Like Growth Factor I Levels and Increased Life Span. Endocrinology, 2003, 144, 3799-3810.	1.4	474
4	The GH/IGF-1 axis in ageing and longevity. Nature Reviews Endocrinology, 2013, 9, 366-376.	4.3	418
5	Essential Role of Growth Hormone in Ischemia-Induced Retinal Neovascularization. Science, 1997, 276, 1706-1709.	6.0	392
6	Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression. Cell Stem Cell, 2014, 14, 810-823.	5.2	369
7	Role of the GH/IGF-1 axis in lifespan and healthspan: Lessons from animal models. Growth Hormone and IGF Research, 2008, 18, 455-471.	0.5	249
8	Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone and IGF Research, 2004, 14, 309-318.	0.5	244
9	Liver-specific Deletion of the Growth Hormone Receptor Reveals Essential Role of Growth Hormone Signaling in Hepatic Lipid Metabolism. Journal of Biological Chemistry, 2009, 284, 19937-19944.	1.6	230
10	Bone homeostasis in growth hormone receptor–null mice is restored by IGF-I but independent of Stat5. Journal of Clinical Investigation, 2000, 106, 1095-1103.	3.9	225
11	Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E23-E29.	1.8	224
12	Prolactin, Growth Hormone, and Epidermal Growth Factor Activate Stat5 in Different Compartments of Mammary Tissue and Exert Different and Overlapping Developmental Effects. Developmental Biology, 2001, 229, 163-175.	0.9	210
13	A Consensus on the Diagnosis and Treatment of Acromegaly Comorbidities: An Update. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e937-e946.	1.8	207
14	Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 522-529.	1.7	206
15	Growth Hormone (GH), GH Receptor, and Signal Transduction. Molecular Genetics and Metabolism, 2000, 71, 293-314.	0.5	204
16	Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1–deficient mice. Journal of Clinical Investigation, 2004, 113, 96-105.	3.9	200
17	Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E405-E413.	1.8	195
18	Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids, 2002, 37, 733-740	0.7	181

#	Article	IF	CITATIONS
19	Diagnosis, Genetics, and Therapy of Short Stature in Children: A Growth Hormone Research Society International Perspective. Hormone Research in Paediatrics, 2019, 92, 1-14.	0.8	181
20	Glycine 119 of Bovine Growth Hormone is Critical for Growth-Promoting Activity. Molecular Endocrinology, 1991, 5, 1845-1852.	3.7	162
21	Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochemical and Biophysical Research Communications, 2005, 331, 1120-1126.	1.0	162
22	Reduced Levels of Thyroid Hormones, Insulin, and Glucose, and Lower Body Core Temperature in the Growth Hormone Receptor/Binding Protein Knockout Mouse. Experimental Biology and Medicine, 2001, 226, 552-558.	1.1	159
23	Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHRâ^'/â^') Mouse. Endocrine Reviews, 2011, 32, 356-386.	8.9	155
24	Functional Antagonism between Endogenous Mouse Growth Hormone (GH) and a GH Analog Results in Dwarf Transgenic Mice [*] . Endocrinology, 1991, 129, 1402-1408.	1.4	148
25	Growth Hormone Regulation of p85Â Expression and Phosphoinositide 3-Kinase Activity in Adipose Tissue: Mechanism for Growth Hormone-Mediated Insulin Resistance. Diabetes, 2007, 56, 1638-1646.	0.3	144
26	Pituitary and Testicular Function in Growth Hormone Receptor Gene Knockout Mice *. Endocrinology, 1999, 140, 1082-1088.	1.4	139
27	The Role of GH in Adipose Tissue: Lessons from Adipose-Specific GH Receptor Gene-Disrupted Mice. Molecular Endocrinology, 2013, 27, 524-535.	3.7	131
28	Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1–deficient mice. Journal of Clinical Investigation, 2004, 113, 96-105.	3.9	131
29	Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7315-7320.	3.3	125
30	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	1.4	125
31	Two-Year Body Composition Analyses of Long-Lived GHR Null Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 31-40.	1.7	120
32	Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity. PLoS ONE, 2009, 4, e4567.	1.1	116
33	Sexual dimorphism in cortical bone size and strength but not density is determined by independent and time-specific actions of sex steroids and IGF-1: Evidence from pubertal mouse models. Journal of Bone and Mineral Research, 2010, 25, 617-626.	3.1	116
34	Gene Expression Patterns in Calorically Restricted Mice: Partial Overlap with Long-Lived Mutant Mice. Molecular Endocrinology, 2002, 16, 2657-2666.	3.7	111
35	TRANSGENIC MODELS OF GROWTH HORMONE ACTION. Annual Review of Nutrition, 1999, 19, 437-461.	4.3	108
36	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	1.4	107

#	Article	IF	CITATIONS
37	Evidence That Insulin-Like Growth Factor I and Growth Hormone Are Required for Prostate Gland Development ¹ . Endocrinology, 1999, 140, 1984-1989.	1.4	106
38	Development of Pure Prolactin Receptor Antagonists. Journal of Biological Chemistry, 2003, 278, 35988-35999.	1.6	105
39	The role of prolactin and growth hormone in mammary gland development. Molecular and Cellular Endocrinology, 2002, 197, 127-131.	1.6	102
40	Identification of Tyrosine Residues in the Intracellular Domain of the Growth Hormone Receptor Required for Transcriptional Signaling and Stat5 Activation. Journal of Biological Chemistry, 1996, 271, 12669-12673.	1.6	101
41	Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations. European Journal of Endocrinology, 2016, 174, C1-C8.	1.9	99
42	Metabolic effects of intraâ€abdominal fat in GHRKO mice. Aging Cell, 2012, 11, 73-81.	3.0	97
43	Effect of Growth Hormone on Susceptibility to Diet-Induced Obesity. Endocrinology, 2006, 147, 2801-2808.	1.4	93
44	Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E317-E325.	1.8	92
45	Disulfide Linkage of Growth Hormone (CH) Receptors (GHR) Reflects GH-induced CHR Dimerization. Journal of Biological Chemistry, 1999, 274, 33072-33084.	1.6	89
46	Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15199-15204.	3.3	87
47	Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice. Endocrinology, 2009, 150, 1353-1360.	1.4	86
48	Reporter genes in transgenic mice. Transgenic Research, 1994, 3, 182-194.	1.3	85
49	Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes, 2015, 64, 3093-3103.	0.3	85
50	Growth Hormone (GH) and a GH Antagonist Promote GH Receptor Dimerization and Internalization. Journal of Biological Chemistry, 1996, 271, 6708-6712.	1.6	84
51	Growth Hormone (GH)-induced Dimerization Inhibits Phorbol Ester-stimulated GH Receptor Proteolysis. Journal of Biological Chemistry, 2001, 276, 24565-24573.	1.6	83
52	The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nature Reviews Endocrinology, 2020, 16, 135-146.	4.3	83
53	Differentially Expressed Proteins in the Pancreas of Diet-induced Diabetic Mice. Molecular and Cellular Proteomics, 2005, 4, 1311-1318.	2.5	81
54	Enlargement of Interscapular Brown Adipose Tissue in Growth Hormone Antagonist Transgenic and in Growth Hormone Receptor Gene-Disrupted Dwarf Mice. Experimental Biology and Medicine, 2003, 228, 207-215.	1.1	80

#	Article	IF	CITATIONS
55	Heterogeneity Among White Adipose Tissue Depots in Male C57BL/6J Mice. Obesity, 2012, 20, 101-111.	1.5	80
56	Effects of Growth Hormone Overexpression and Growth Hormone Resistance on Neuroendocrine and Reproductive Functions in Transgenic and Knock-Out Mice2. Proceedings of the Society for Experimental Biology and Medicine, 1999, 222, 113-123.	2.0	79
57	Cell-free synthesis of a precursor polyprotein containing both gag and pol gene products by Rauscher murine leukemia virus 35S RNA. Cell, 1978, 13, 359-369.	13.5	78
58	Disruption of Growth Hormone Signaling Retards Early Stages of Prostate Carcinogenesis in the C3(1)/T Antigen Mouse. Endocrinology, 2005, 146, 5188-5196.	1.4	77
59	Regulation of mTOR Activity in Snell Dwarf and GH Receptor Gene-Disrupted Mice. Endocrinology, 2015, 156, 565-575.	1.4	77
60	Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Reports, 2016, 14, 1571-1580.	2.9	77
61	Growth Hormone Receptor Antagonists. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1503-1511.	1.8	76
62	Growth Without Growth Hormone Receptor: Estradiol Is a Major Growth Hormone-Independent Regulator of Hepatic IGF-I Synthesis. Journal of Bone and Mineral Research, 2005, 20, 2138-2149.	3.1	76
63	Protection against Diabetes-Induced Nephropathy in Growth Hormone Receptor/Binding Protein Gene-Disrupted Mice1. Endocrinology, 2000, 141, 163-168.	1.4	73
64	Growth hormone and adipose tissue: Beyond the adipocyte. Growth Hormone and IGF Research, 2011, 21, 113-123.	0.5	73
65	Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Research, 2010, 19, 849-867.	1.3	72
66	Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metabolism, 2017, 25, 1320-1333.e5.	7.2	71
67	Growth hormone modulates hypothalamic inflammation in longâ€lived pituitary dwarf mice. Aging Cell, 2015, 14, 1045-1054.	3.0	70
68	Growth hormone improves body composition, fasting blood glucose, glucose tolerance and liver triacylglycerol in a mouse model of diet-induced obesity and type 2 diabetes. Diabetologia, 2009, 52, 1647-1655.	2.9	69
69	Impact of Growth Hormone Resistance on Female Reproductive Function: New Insights from Growth Hormone Receptor Knockout Mice1. Biology of Reproduction, 2002, 67, 1115-1124.	1.2	68
70	Effects of Growth Hormone and Prolactin on Adipose Tissue Development and Function. Pituitary, 2003, 6, 97-102.	1.6	68
71	Growth hormone regulates neuroendocrine responses to weight loss via AgRP neurons. Nature Communications, 2019, 10, 662.	5.8	68
72	Evaluation of growth hormone (CH) action in mice: Discovery of CH receptor antagonists and clinical indications. Molecular and Cellular Endocrinology, 2014, 386, 34-45.	1.6	67

#	Article	IF	CITATIONS
73	cDNA cloning and characterization of human Δ5-desaturase involved in the biosynthesis of arachidonic acid. Biochemical Journal, 2000, 347, 719-724.	1.7	65
74	Impact of Androgens, Growth Hormone, and IGF-I on Bone and Muscle in Male Mice During Puberty. Journal of Bone and Mineral Research, 2006, 22, 72-82.	3.1	64
75	Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females. Endocrinology, 2016, 157, 4502-4513.	1.4	64
76	Remodeling of Mouse Milk Glycoconjugates by Transgenic Expression of a Human Glycosyltransferase. Journal of Biological Chemistry, 1995, 270, 29515-29519.	1.6	61
77	Evidence for Growth Hormone (CH) Autoregulation in Pituitary Somatotrophs in CH Antagonist-Transgenic Mice and GH Receptor-Deficient Mice. American Journal of Pathology, 2000, 156, 1009-1015.	1.9	61
78	The Human Growth Hormone Antagonist B2036 Does Not Interact with the Prolactin Receptor. Endocrinology, 1999, 140, 3853-3856.	1.4	59
79	Inhibition of estrogen-independent mammary carcinogenesis by disruption of growth hormone signaling. Carcinogenesis, 2007, 28, 143-150.	1.3	57
80	Hypothesis: Extra-hepatic acromegaly: a new paradigm?. European Journal of Endocrinology, 2011, 164, 11-16.	1.9	55
81	Growth Hormone Promotes the Association of Transcription Factor STAT5 with the Growth Hormone Receptor. Journal of Biological Chemistry, 1996, 271, 19768-19773.	1.6	53
82	ls the Laron Mouse an Accurate Model of Laron Syndrome?. Molecular Genetics and Metabolism, 1999, 68, 232-236.	0.5	53
83	Pancreatic Islet-Specific Expression of an Insulin-Like Growth Factor-I Transgene Compensates Islet Cell Growth in Growth Hormone Receptor Gene-Deficient Mice. Endocrinology, 2005, 146, 2602-2609.	1.4	53
84	Growth hormone gene expression in eukaryotic cells directed by the Rous sarcoma virus long terminal repeat or cytomegalovirus immediate-early promoter. Gene, 1985, 38, 227-232.	1.0	52
85	MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects?. European Journal of Endocrinology, 2018, 178, R155-R181.	1.9	52
86	Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mechanisms of Ageing and Development, 2009, 130, 393-400.	2.2	50
87	The aging population – Is there a role for endocrine interventions?. Growth Hormone and IGF Research, 2009, 19, 89-100.	0.5	50
88	Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. Journal of Endocrinology, 2006, 191, 101-111.	1.2	48
89	Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?. Journal of Endocrinology, 2013, 216, 363-374.	1.2	48
90	The somatotropic axis and aging: Benefits of endocrine defects. Growth Hormone and IGF Research, 2016, 27, 41-45.	0.5	48

#	Article	IF	CITATIONS
91	Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell, 2014, 13, 1019-1027.	3.0	47
92	Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHRâ^'/â^' mice. Aging, 2015, 7, 500-512.	1.4	46
93	G120R, a Human Growth Hormone Antagonist, Shows Zinc-dependent Agonist and Antagonist Activity on Nb2 Cells. Journal of Biological Chemistry, 1995, 270, 9222-9226.	1.6	45
94	Growth Hormone Receptor Antagonists. Neuroendocrinology, 2006, 83, 264-268.	1.2	45
95	ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. Journal of Translational Medicine, 2019, 17, 170.	1.8	45
96	Effects of Caloric Restriction and Growth Hormone Resistance on Insulin-Related Intermediates in the Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 18-26.	1.7	44
97	Postâ€transcriptional regulation of IGF1R by key microRNAs in long–lived mutant mice. Aging Cell, 2011, 10, 1080-1088.	3.0	44
98	Puberty is delayed in male growth hormone receptor gene-disrupted mice. Journal of Andrology, 2002, 23, 661-8.	2.0	44
99	The Growth Hormone (CH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and Pituitary Receptor Expression in the Absence and Presence of GH Feedback*. Endocrinology, 2001, 142, 1117-1123.	1.4	42
100	Growth hormone acts along the PPARγ-FSP27 axis to stimulate lipolysis in human adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E34-E42.	1.8	42
101	Safety of growth hormone replacement in survivors of cancer and intracranial and pituitary tumours: a consensus statement. European Journal of Endocrinology, 2022, 186, P35-P52.	1.9	42
102	Compensatory renal growth in uninephrectomized adult mice is growth hormone dependent. Kidney International, 1999, 56, 2048-2054.	2.6	41
103	Biological effects of growth hormone and its antagonist. Trends in Molecular Medicine, 2001, 7, 126-132.	3.5	40
104	Effects of rapamycin on growth hormone receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1495-E1503.	3.3	40
105	Adipocyte-Specific GH Receptor–Null (AdGHRKO) Mice Have Enhanced Insulin Sensitivity With Reduced Liver Triglycerides. Endocrinology, 2019, 160, 68-80.	1.4	40
106	Constitutive Expression of Peroxisome Proliferator-Activated Receptor α-Regulated Genes in Dwarf Mice. Molecular Pharmacology, 2005, 67, 681-694.	1.0	39
107	Caloric restriction and growth hormone receptor knockout: Effects on expression of genes involved in insulin action in the heart. Experimental Gerontology, 2006, 41, 417-429.	1.2	39
108	Growth Hormone Research Society perspective on biomarkers of GH action in children and adults. Endocrine Connections, 2018, 7, R126-R134.	0.8	39

#	Article	IF	CITATIONS
109	Phase separation of acetonitrile-water mixture in protein purification. Separation and Purification Technology, 1994, 4, 258-260.	0.7	38
110	Muscle mechano growth factor is preferentially induced by growth hormone in growth hormone hormone-deficientlit/litmice. Journal of Physiology, 2004, 560, 341-349.	1.3	38
111	Hypothalamic growth hormone receptor (GHR)Âcontrols hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Molecular Metabolism, 2017, 6, 393-405.	3.0	38
112	Growth Hormone and the Epithelial-to-Mesenchymal Transition. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3662-3673.	1.8	38
113	Discovery and mechanism of action of pegvisomant. European Journal of Endocrinology, 2003, 148, S21-S25.	1.9	37
114	GH action influences adipogenesis of mouse adipose tissue-derived mesenchymal stem cells. Journal of Endocrinology, 2015, 226, 13-23.	1.2	36
115	Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget, 2017, 8, 21579-21598.	0.8	36
116	Inhibition of diabetic nephropathy by a GH antagonist: A molecular analysis. Kidney International, 1996, 50, 506-514.	2.6	35
117	GH Knockout Mice Have Increased Subcutaneous Adipose Tissue With Decreased Fibrosis and Enhanced Insulin Sensitivity. Endocrinology, 2019, 160, 1743-1756.	1.4	35
118	Growth hormone action in the developing neural retina: A proteomic analysis. Proteomics, 2008, 8, 389-401.	1.3	34
119	Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging, 2015, 7, 195-204.	1.4	34
120	Plasma biomarkers of mouse aging. Age, 2011, 33, 291-307.	3.0	33
121	Male Bovine GH Transgenic Mice Have Decreased Adiposity With an Adipose Depot-Specific Increase in Immune Cell Populations. Endocrinology, 2015, 156, 1794-1803.	1.4	33
122	Growth hormone enhances the recovery of hypoglycemia <i>via</i> ventromedial hypothalamic neurons. FASEB Journal, 2019, 33, 11909-11924.	0.2	33
123	Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma. Journal of Endocrinology, 2006, 190, 271-285.	1.2	32
124	Growth hormone receptor gene deficiency causes delayed insulin responsiveness in skeletal muscles without affecting compensatory islet cell overgrowth in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E491-E498.	1.8	32
125	A proteomic approach to obesity and type 2 diabetes. Journal of Cellular and Molecular Medicine, 2015, 19, 1455-1470.	1.6	32
126	Effect of growth hormone on insulin signaling. Molecular and Cellular Endocrinology, 2020, 518, 111038.	1.6	32

#	Article	IF	CITATIONS
127	Pituitary and Testicular Function in Growth Hormone Receptor Gene Knockout Mice. , 0, .		32
128	Analysis of mouse skin reveals proteins that are altered in a diet-induced diabetic state: A new method for detection of type 2 diabetes. Proteomics, 2007, 7, 1140-1149.	1.3	31
129	Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment. Biochemical and Biophysical Research Communications, 2013, 441, 144-150.	1.0	31
130	The role of transplanted visceral fat from the long-lived growth hormone receptor knockout mice on insulin signaling. GeroScience, 2017, 39, 51-59.	2.1	31
131	Growth hormone controls lipolysis by regulation of FSP27 expression. Journal of Endocrinology, 2018, 239, 289-301.	1.2	31
132	Perspective: Proteomic approach to detect biomarkers of human growth hormone. Growth Hormone and IGF Research, 2009, 19, 399-407.	0.5	30
133	Proteomic changes in the heart of diet-induced pre-diabetic mice. Journal of Proteomics, 2011, 74, 716-727.	1.2	30
134	Liver and Kidney Growth Hormone (GH) Receptors Are Regulated Differently in Diabetic GH and GH Antagonist Transgenic Mice*. Endocrinology, 1997, 138, 1988-1994.	1.4	29
135	The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience, 2019, 41, 759-774.	2.1	29
136	Adiposity profile in the dwarf rat: an unusually lean model of profound growth hormone deficiency. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1483-E1494.	1.8	28
137	Growth Hormone Resistance—Special Focus on Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2017, 18, 1019.	1.8	28
138	Central growth hormone action regulates metabolism during pregnancy. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E925-E940.	1.8	28
139	Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. Journal of Neuroscience, 2020, 40, 4309-4322.	1.7	28
140	Growth hormone receptor gene disruption in matureâ€adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell, 2021, 20, e13506.	3.0	28
141	Insulin receptor substrates form high-molecular-mass complexes that modulate their availability to insulin/insulin-like growth factor-I receptor tyrosine kinases. Biochemical and Biophysical Research Communications, 2011, 404, 767-773.	1.0	27
142	Elevated Systolic Blood Pressure in Male GH Transgenic Mice Is Age Dependent. Endocrinology, 2014, 155, 975-986.	1.4	27
143	Specific suppression of insulin sensitivity in <i>growth hormone receptor</i> geneâ€disrupted (<scp>GHR</scp> â€ <scp>KO</scp>) mice attenuates phenotypic features of slow aging. Aging Cell, 2014, 13, 981-1000.	3.0	27
144	Mitochondrial Function Is Compromised in Cortical Bone Osteocytes of Long-Lived Growth Hormone Receptor Null Mice. Journal of Bone and Mineral Research, 2019, 34, 106-122.	3.1	27

#	Article	IF	CITATIONS
145	Use of Avian Retro viral-Bovine Growth Hormone DNA Recombinants to Direct Expression of Biologically Active Growth Hormone by Cultured Fibroblasts. DNA and Cell Biology, 1985, 4, 23-31.	5.1	26
146	Co-Expression of Bovine Growth Hormone (GH) and Human GH Antagonist Genes in Transgenic Mice. Endocrinology, 1997, 138, 851-854.	1.4	26
147	Low-Protein Diet Suppresses Serum Insulin-Like Growth Factor-1 and Decelerates the Progression of Growth Hormone-Induced Glomerulosclerosis. American Journal of Nephrology, 2001, 21, 331-339.	1.4	26
148	Serum proteome changes in acromegalic patients following transsphenoidal surgery: novel biomarkers of disease activity. European Journal of Endocrinology, 2011, 164, 157-167.	1.9	26
149	Activation of the GH/IGF-1 axis by CJC-1295, a long-acting GHRH analog, results in serum protein profile changes in normal adult subjects. Growth Hormone and IGF Research, 2009, 19, 471-477.	0.5	25
150	Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget, 2015, 6, 26702-26715.	0.8	25
151	Growth hormone/STAT5 signaling in proopiomelanocortin neurons regulates glucoprivic hyperphagia. Molecular and Cellular Endocrinology, 2019, 498, 110574.	1.6	25
152	Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology. Growth Hormone and IGF Research, 2020, 53-54, 101333.	0.5	25
153	Growth Hormone Receptor Deletion Reduces the Density of Axonal Projections from Hypothalamic Arcuate Nucleus Neurons. Neuroscience, 2020, 434, 136-147.	1.1	25
154	Perspective: Proteomics—See "Spots―Run. Endocrinology, 2002, 143, 1990-1994.	1.4	24
155	Effects of growth hormone overexpression vs. growth hormone receptor gene disruption on mouse hindlimb muscle fiber type composition. Growth Hormone and IGF Research, 2008, 18, 479-486.	0.5	24
156	Novel serum biomarkers for erythropoietin use in humans: a proteomic approach. Journal of Applied Physiology, 2011, 110, 149-156.	1.2	24
157	Pharmacologic Inhibition of Ghrelin Receptor Signaling Is Insulin Sparing and Promotes Insulin Sensitivity. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 115-124.	1.3	24
158	A Dwarf Mouse Model With Decreased GH/IGF-1 Activity That Does Not Experience Life-Span Extension: Potential Impact of Increased Adiposity, Leptin, and Insulin With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69A, 131-141.	1.7	24
159	Central growth hormone signaling is not required for the timing of puberty. Journal of Endocrinology, 2019, 243, 161-173.	1.2	24
160	Growth Hormone Receptor/Binding Protein (GHR/BP) Knockout Mice: A 3-Year Update. Molecular Genetics and Metabolism, 2001, 73, 1-10.	0.5	23
161	Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Research, 2011, 20, 1305-1320.	1.3	23
162	Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS ONE, 2016, 11, e0149941.	1.1	23

#	Article	IF	CITATIONS
163	A 40-Amino Acid Segment of the Growth Hormone Receptor Cytoplasmic Domain Is Essential for GH-induced Tyrosine-phosphorylated Cytosolic Proteins. Journal of Biological Chemistry, 1995, 270, 6261-6266.	1.6	22
164	Growth hormone (GH) receptor knockout mice reveal actions of GH in lung development. Proteomics, 2006, 6, 341-348.	1.3	22
165	Growth Hormone Receptor Antagonist Transgenic Mice Are Protected From Hyperinsulinemia and Glucose Intolerance Despite Obesity When Placed on a HF Diet. Endocrinology, 2015, 156, 555-564.	1.4	22
166	Differential effects of early-life nutrient restriction in long-lived GHR-KO and normal mice. GeroScience, 2017, 39, 347-356.	2.1	22
167	Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps. Hormones and Cancer, 2017, 8, 143-156.	4.9	22
168	Increased fibrosis: A novel means by which GH influences white adipose tissue function. Growth Hormone and IGF Research, 2018, 39, 45-53.	0.5	22
169	Growth hormone activated STAT5 is required for induction of beige fat in vivo. Growth Hormone and IGF Research, 2018, 42-43, 40-51.	0.5	22
170	Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology, 2020, 161, .	1.4	22
171	The Growth Hormone (GH)-Axis of GH Receptor/Binding Protein Gene-Disrupted and Metallothionein-Human GH-Releasing Hormone Transgenic Mice: Hypothalamic Neuropeptide and Pituitary Receptor Expression in the Absence and Presence of GH Feedback. , 0, .		22
172	Homologous and Heterologous Growth Hormones Fail to Stimulate Avian Cartilage Growth in Vitro*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 747-750.	1.8	21
173	Expression of fungal desaturase genes in cultured mammalian cells. Molecular and Cellular Biochemistry, 2001, 219, 7-11.	1.4	21
174	Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1. Journal of Ovarian Research, 2012, 5, 18.	1.3	21
175	The slow-aging growth hormone receptor/binding protein gene-disrupted (GHR-KO) mouse is protected from aging-resultant neuromusculoskeletal frailty. Age, 2014, 36, 117-127.	3.0	21
176	The Forgotten Lactogenic Activity of Growth Hormone: Important Implications for Rodent Studies. Endocrinology, 2015, 156, 1620-1622.	1.4	21
177	Inflammatory and Glutamatergic Homeostasis Are Involved in Successful Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 281-289.	1.7	21
178	Depot-specific and GH-dependent regulation of IGF binding protein-4, pregnancy-associated plasma protein-A, and stanniocalcin-2 in murine adipose tissue. Growth Hormone and IGF Research, 2018, 39, 54-61.	0.5	21
179	Mice with gene alterations in the CH and IGF family. Pituitary, 2022, 25, 1-51.	1.6	21
180	Growth hormone and aging. Age, 2000, 23, 219-225.	3.0	20

#	Article	IF	CITATIONS
181	Identification of New Biomarkers of Low-Dose GH Replacement Therapy in GH-Deficient Patients. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2089-2097.	1.8	20
182	Reversal of experimental Laron Syndrome by xenotransplantation of microencapsulated porcine Sertoli cells. Journal of Controlled Release, 2013, 165, 75-81.	4.8	20
183	Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice. Endocrinology, 2016, 157, 1929-1941.	1.4	20
184	Spatial learning and memory in male mice with altered growth hormone action. Hormones and Behavior, 2017, 93, 18-30.	1.0	20
185	Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis. International Journal of Molecular Sciences, 2017, 18, 2046.	1.8	20
186	Growth Hormone Upregulates Melanocyte-Inducing Transcription Factor Expression and Activity via JAK2-STAT5 and SRC Signaling in GH Receptor-Positive Human Melanoma. Cancers, 2019, 11, 1352.	1.7	20
187	Characterization of an intestine-specific GH receptor knockout (IntGHRKO) mouse. Growth Hormone and IGF Research, 2019, 46-47, 5-15.	0.5	20
188	17α-Estradiol Modulates IGF1 and Hepatic Gene Expression in a Sex-Specific Manner. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 778-785.	1.7	20
189	Association between IGFâ€1 levels ranges and allâ€cause mortality: A metaâ€analysis. Aging Cell, 2022, 21, e13540.	3.0	20
190	Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E942-E950.	1.8	19
191	The Absence of GH Signaling Affects the Susceptibility to High-Fat Diet-Induced Hypothalamic Inflammation in Male Mice. Endocrinology, 2014, 155, 4856-4867.	1.4	19
192	A Long-lived Mouse Lacking Both Growth Hormone and Growth Hormone Receptor: A New Animal Model for Aging Studies. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw193.	1.7	19
193	Impact of Growth Hormone on Regulation of Adipose Tissue. , 2017, 7, 819-840.		19
194	Exogenous and endogenous effects of growth hormone in animals. Livestock Science, 1991, 27, 61-75.	1.2	18
195	Elevation of internal 6-methyladenine mRNA methyltransferase activity after cellular transformation. Cancer Letters, 1996, 103, 107-113.	3.2	18
196	Growth hormone promotes glomerular lipid accumulation in bGH mice. Kidney International, 2005, 68, 2019-2028.	2.6	18
197	CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice. Growth Hormone and IGF Research, 2007, 17, 346-351.	0.5	18
198	The cardiovascular phenotype of a mouse model of acromegaly. Growth Hormone and IGF Research, 2009, 19, 413-419.	0.5	18

#	Article	IF	CITATIONS
199	A comparison of bovine growth hormone expression directed by bGH genomic or intronless DNA in transiently transfected eukaryotic cells. Gene, 1987, 57, 47-52.	1.0	17
200	Stable Production of a Human Growth Hormone Antagonist from CHO Cells Adapted to Serum-Free Suspension Culture. Biotechnology Progress, 1999, 15, 336-346.	1.3	17
201	History and Future of Growth Hormone Research. Hormone Research in Paediatrics, 2003, 60, 103-112.	0.8	17
202	Daily energy balance in growth hormone receptor/binding protein (GHR â^'/â^') gene-disrupted mice is achieved through an increase in dark-phase energy efficiency. Growth Hormone and IGF Research, 2010, 20, 73-79.	0.5	17
203	Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial. Molecular Metabolism, 2019, 29, 65-75.	3.0	17
204	Growth hormone, insulin-like growth factor system and carcinogenesis. Endokrynologia Polska, 2016, 67, 414-26.	0.3	17
205	A Growth Hormone (GH) Analog that Antagonizes the Lipolytic Effect but Retains Full Insulin-Like (Antilipolytic) Activity of GH. Experimental Biology and Medicine, 1993, 203, 311-316.	1.1	16
206	Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Hormone and IGF Research, 2012, 22, 224-233.	0.5	16
207	Age-Related and Depot-Specific Changes in White Adipose Tissue of Growth Hormone Receptor-Null Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 34-43.	1.7	16
208	Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age. Age, 2014, 36, 9651.	3.0	16
209	17α-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. Experimental Gerontology, 2020, 129, 110769.	1.2	16
210	The effects of growth hormone on therapy resistance in cancer. , 2019, 2, 827-846.		16
211	Identification, Isolation, and Cloning of Growth Hormone (GH)-Inducible Interscapular Brown Adipose Complementary Deoxyribonucleic Acid from GH Antagonist Mice*. Endocrinology, 2001, 142, 2937-2945.	1.4	15
212	Fibroblast growth factor 21, fibroblast growth factor receptor 1, and β-Klotho expression in bovine growth hormone transgenic and growth hormone receptor knockout mice. Growth Hormone and IGF Research, 2016, 30-31, 22-30.	0.5	15
213	Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Clucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence. Gerontology, 2016, 62, 163-172.	1.4	15
214	Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skeletal Muscle, 2017, 7, 17.	1.9	15
215	Effects of tissue-specific GH receptor knockouts in mice. Molecular and Cellular Endocrinology, 2020, 515, 110919.	1.6	15
216	Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary, 2021, 24, 438-456.	1.6	15

#	Article	IF	CITATIONS
217	A comparison of bovine growth-hormone gene expression m mouse L cells directed by the Moloney murine-leukemia virus long terminal repeat, simian virus-40 early promoter or cytomegalovirus immediate-early promoter. Gene, 1988, 70, 51-56.	1.0	14
218	Quantitative determination of growth hormone by immunoblotting. Analytical Biochemistry, 1990, 191, 268-271.	1.1	14
219	Plasma Protein Biomarkers Correlated with the Development of Diet-Induced Type 2 Diabetes in Mice. Clinical Proteomics, 2010, 6, 6-17.	1.1	14
220	Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects. PLoS ONE, 2012, 7, e31857.	1.1	14
221	Expression of Apoptosis-Related Genes in Liver-Specific Growth Hormone Receptor Gene-Disrupted Mice Is Sex Dependent. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 44-52.	1.7	14
222	Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland. Journal of Ophthalmology, 2016, 2016, 1-7.	0.6	14
223	Deconstructing the Growth Hormone Receptor(GHR): Physical and Metabolic Phenotypes of Tissue-Specific GHR Gene-Disrupted Mice. Progress in Molecular Biology and Translational Science, 2016, 138, 27-39.	0.9	14
224	Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot–Specific Manner in Male Mice With Modified GH Action. Endocrinology, 2017, 158, 1406-1418.	1.4	14
225	The impact of growth hormone on proteomic profiles: a review of mouse and adult human studies. Clinical Proteomics, 2017, 14, 24.	1.1	14
226	New insights of growth hormone (GH) actions from tissue-specific GH receptor knockouts in mice. Archives of Endocrinology and Metabolism, 2020, 63, 557-567.	0.3	14
227	Activation of the mouse metallothionein-I promoter in transiently transfected avian cells. Gene, 1989, 76, 75-80.	1.0	13
228	Growth Hormone (GH) Binding and Effects of GH Analogs in Transgenic Mice. Experimental Biology and Medicine, 1994, 206, 190-194.	1.1	13
229	Novel serum protein biomarkers indicative of growth hormone doping in healthy human subjects. Proteomics, 2011, 11, 3565-3571.	1.3	13
230	Age- and Sex-Associated Plasma Proteomic Changes in Growth Hormone Receptor Gene–Disrupted Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 830-840.	1.7	13
231	Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene-Disrupted Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 639-651.	1.7	13
232	Mouse models of growth hormone action and aging: A proteomic perspective. Proteomics, 2013, 13, 674-685.	1.3	13
233	Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw088.	1.7	13
234	Lessons learned from studies with the growth hormone receptor. Growth Hormone and IGF Research, 2016, 28, 21-25.	0.5	13

#	Article	IF	CITATIONS
235	Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology, 2021, 162, .	1.4	13
236	Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nature Reviews Endocrinology, 2022, 18, 558-573.	4.3	13
237	Differential Effects of Growth Hormone Versus Insulin-Like Growth Factor-I on the Mouse Plasma Proteome. Endocrinology, 2011, 152, 3791-3802.	1.4	12
238	Decreased insulin sensitivity and increased oxidative damage in wasting adipose tissue depots of wild-type mice. Age, 2012, 34, 1225-1237.	3.0	12
239	Proteomic analysis allows for early detection of potential markers of metabolic impairment in very young obese children. International Journal of Pediatric Endocrinology (Springer), 2014, 2014, 9.	1.6	12
240	Diet-induced weight loss is sufficient to reduce senescent cell number in white adipose tissue of weight-cycled mice. Nutrition and Healthy Aging, 2016, 4, 95-99.	0.5	12
241	The effect of low and high plasma levels of insulin-like growth factor-1 (IGF-1) on the morphology of major organs: studies of Laron dwarf and bovine growth hormone transgenic (bGHTg) mice. Histology and Histopathology, 2013, 28, 1325-36.	0.5	12
242	Purification of a pyrogen-free human growth hormone antagonist. Biotechnology and Bioengineering, 1995, 48, 520-528.	1.7	11
243	Structural comparison of a portion of the rat and mouse growth hormone receptor/binding protein genes. Gene, 1996, 177, 257-259.	1.0	11
244	Growth Hormone and Epidermal Growth Factor in Salivary Glands of Giant and Dwarf Transgenic Mice. Journal of Histochemistry and Cytochemistry, 2004, 52, 1191-1197.	1.3	11
245	Phenotypical Enrichment Strategies for Microarray Data Analysis Applied in a Type II Diabetes Study. OMICS A Journal of Integrative Biology, 2005, 9, 251-265.	1.0	11
246	Central leptin and insulin administration modulates serum cytokine- and lipoprotein-related markers. Metabolism: Clinical and Experimental, 2012, 61, 1646-1657.	1.5	11
247	Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sciences, 2020, 259, 118229.	2.0	11
248	The acute effects of growth hormone in adipose tissue is associated with suppression of antilipolytic signals. Physiological Reports, 2020, 8, e14373.	0.7	11
249	Effects of the Isolated and Combined Ablation of Growth Hormone and IGF-1 Receptors in Somatostatin Neurons. Endocrinology, 2022, 163, .	1.4	11
250	Expression of a functional porcine growth hormone receptor cDNA in mouse L cells. Molecular and Cellular Endocrinology, 1993, 94, 89-96.	1.6	10
251	Production, characterization and functional activities of v-Ski in cultured cells. Gene, 1997, 202, 15-21.	1.0	10
252	Consequences of Overexpression of Growth Hormone in Transgenic Mice on Liver Cytochrome P450 Enzymes. Biochemical Pharmacology, 1998, 55, 1481-1487.	2.0	10

#	Article	IF	CITATIONS
253	Expression of Mutant Bovine Growth Hormone Genes in Mice Perturbs Age-Related Nutrient Utilization Patterns. Journal of Nutrition, 1998, 128, 520-524.	1.3	10
254	Nuclear Localization of Growth Hormone Receptor: Another Age of Discovery for Cytokine Action?. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe69.	4.1	10
255	Ablation of Hepatic Production of the Acid-Labile Subunit in Bovine-GH Transgenic Mice: Effects on Organ and Skeletal Growth. Endocrinology, 2017, 158, 2556-2571.	1.4	10
256	Relative Contributions of Myostatin and the GH/IGF-1 Axis in Body Composition and Muscle Strength. Frontiers in Physiology, 2018, 9, 1418.	1.3	10
257	Deletion of growth hormone receptor in hypothalamic neurons affects the adaptation capacity to aerobic exercise. Peptides, 2021, 135, 170426.	1.2	10
258	GH deficiency and insensitivity in children and adults. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1-2.	2.6	10
259	Disruption of the GH receptor gene in adult mice and in insulin sensitive tissues. Growth Hormone and IGF Research, 2018, 38, 3-7.	0.5	10
260	Co-Expression of Bovine Growth Hormone (GH) and Human GH Antagonist Genes in Transgenic Mice. , 0, .		10
261	Perspective: Proteomics—See "Spots―Run. , 0, .		10
262	Growth Hormone Discovery and Structure. Pediatric Endocrinology Reviews, 2018, 16, 2-10.	1.2	10
263	A comparison of transcriptional regulatory element activities in transformed and non-transformed rat anterior pituitary cells. Molecular and Cellular Endocrinology, 1991, 75, 91-100.	1.6	9
264	Expression and Characterization of Phosphorylated Recombinant Human β-Casein inEscherichia coli. Protein Expression and Purification, 1997, 10, 202-208.	0.6	9
265	High-Level Expression of Biologically Active Human Prolactin from Recombinant Baculovirus in Insect Cells. Protein Expression and Purification, 2000, 20, 265-273.	0.6	9
266	The Effects of 20-kDa Human Placental GH in Male and Female GH-deficient Mice: An Improved Human GH?. Endocrinology, 2020, 161, .	1.4	9
267	MECHANISMS IN ENDOCRINOLOGY: Transient juvenile hypoglycemia in growth hormone receptor deficiency – mechanistic insights from Laron syndrome and tailored animal models. European Journal of Endocrinology, 2021, 185, R35-R47.	1.9	9
268	Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells. International Journal of Molecular Sciences, 2021, 22, 9908.	1.8	9
269	Liver and Kidney Growth Hormone (GH) Receptors Are Regulated Differently in Diabetic GH and GH Antagonist Transgenic Mice. , 0, .		9
270	Transcriptional profiling identifies strain-specific effects of caloric restriction and opposite responses in human and mouse white adipose tissue. Aging, 2018, 10, 701-746.	1.4	9

#	Article	IF	CITATIONS
271	Transgenic animals and nutrition research. Journal of Nutritional Biochemistry, 1999, 10, 682-695.	1.9	8
272	Effects of Growth Hormone and Insulin-Like Growth Factor I on Muscle in Mouse Models of Human Growth Disorders. Hormone Research in Paediatrics, 2006, 66, 26-34.	0.8	8
273	Selective inner retinal dysfunction in growth hormone transgenic mice. Growth Hormone and IGF Research, 2011, 21, 219-227.	0.5	8
274	Developments in our understanding of the effects of growth hormone on white adipose tissue from mice: implications to the clinic. Expert Review of Endocrinology and Metabolism, 2016, 11, 197-207.	1.2	8
275	Tissue-specific disruption of the growth hormone receptor (GHR) in mice: An update. Growth Hormone and IGF Research, 2020, 51, 1-5.	0.5	8
276	Growth Hormone Upregulates Mediators of Melanoma Drug Efflux and Epithelial-to-Mesenchymal Transition In Vitro and In Vivo. Cancers, 2020, 12, 3640.	1.7	8
277	Growth hormone receptor in dopaminergic neurones regulates stressâ€induced prolactin release in male mice. Journal of Neuroendocrinology, 2021, 33, e12957.	1.2	8
278	Significance of the disulphide bonds of human growth hormone. Endokrynologia Polska, 2013, 64, 300-305.	0.3	8
279	Lack of contribution of 11βHSD1 and glucocorticoid action to reduced muscle mass associated with reduced growth hormone action. Growth Hormone and IGF Research, 2004, 14, 462-466.	0.5	7
280	A liver specific gene that is expressed in growth hormone transgenic mice and in normal female mice as a function of age. Growth Hormone and IGF Research, 2006, 16, 145-156.	0.5	7
281	Standardizing protocols dealing with growth hormone receptor gene disruption in mice using the Cre-lox system. Growth Hormone and IGF Research, 2018, 42-43, 52-57.	0.5	7
282	Growth hormone alters gross anatomy and morphology of the small and large intestines in age- and sex-dependent manners. Pituitary, 2022, 25, 116-130.	1.6	7
283	Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion. Endocrinology, 2022, 163, .	1.4	7
284	Primer: molecular tools used for the understanding of endocrinology. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 355-368.	2.9	6
285	Serum Proteomic Changes after Randomized Prolonged Erythropoietin Treatment and/or Endurance Training: Detection of Novel Biomarkers. PLoS ONE, 2015, 10, e0117119.	1.1	6
286	A review of renal GH/IGF1 family gene expression in chronic kidney diseases. Growth Hormone and IGF Research, 2019, 48-49, 1-4.	0.5	6
287	GHR â^'/â^' Mice are protected from obesityâ€related white adipose tissue inflammation. Journal of Neuroendocrinology, 2020, 32, e12854.	1.2	6
288	Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging. Aging Cell, 2021, 20, e13505.	3.0	6

#	Article	IF	CITATIONS
289	Expression of a cytomegalovirus-human growth hormone-releasing hormone precursor fusion gene in transfected GH3 cells. Molecular and Cellular Endocrinology, 1990, 71, 105-115.	1.6	5
290	The Use of Transgenic Mice in Nutrition Research. Journal of Nutrition, 1994, 124, 461-468.	1.3	5
291	Differential in vivo activities of bovine growth hormone analogues. Transgenic Research, 1997, 7, 61-71.	1.3	5
292	Physical and Mechanical Characteristics of Tibias from Transgenic Mice Expressing Mutant Bovine Growth Hormone Genes. Experimental Biology and Medicine, 2001, 226, 133-139.	1.1	5
293	Increased Metabolic Flexibility and Complexity in a Long-Lived Growth Hormone Insensitive Mouse Model. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69A, 274-281.	1.7	5
294	Differential gene signature in adipose tissue depots of growth hormone transgenic mice. Journal of Neuroendocrinology, 2020, 32, e12893.	1.2	5
295	A novel peptide antagonist of the human growth hormone receptor. Journal of Biological Chemistry, 2021, 296, 100588.	1.6	5
296	Loss of growth hormone signaling in the mouse germline or in adulthood reduces islet mass and alters islet function with notable sex differences. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E1158-E1172.	1.8	5
297	GH Action in Prostate Cancer Cells Promotes Proliferation, Limits Apoptosis, and Regulates Cancer-related Gene Expression. Endocrinology, 2022, 163, .	1.4	5
298	Effect of circulating growth hormone on muscle IGF-I protein concentration in female mice with growth hormone receptor gene disruption. Growth Hormone and IGF Research, 2009, 19, 242-244.	0.5	4
299	Increased class A scavenger receptor and glomerular lipid precede mesangial matrix expansion in the bGH mouse model. Growth Hormone and IGF Research, 2010, 20, 326-332.	0.5	4
300	Living Large: What Mouse Models Reveal about Growth Hormone and Obesity. Energy Balance and Cancer, 2015, , 65-95.	0.2	4
301	Transcriptome profiling of insulin sensitive tissues from GH deficient mice following GH treatment. Pituitary, 2021, 24, 384-399.	1.6	4
302	Excess Growth Hormone Alters the Male Mouse Gut Microbiome in an Age-dependent Manner. Endocrinology, 2022, 163, .	1.4	4
303	Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Frontiers in Oncology, 0, 12, .	1.3	4
304	AP-4- and AP-5-like proteins from mouse L cells are trans-activators and bind to the GT-II region of SV40 early TRE in a mutually exclusive manner. Gene, 1995, 162, 197-203.	1.0	3
305	Regulation of 11β-HSD1 by GH/IGF-1 in key metabolic tissues may contribute to metabolic disease in GH deficient patients. Growth Hormone and IGF Research, 2022, 62, 101440.	0.5	3
306	First use of gene therapy to treat growth hormone resistant dwarfism in a mouse model. Gene Therapy, 2022, , .	2.3	3

#	Article	IF	CITATIONS
307	Growth hormone modulates Trypanosoma cruzi infection in vitro. Growth Hormone and IGF Research, 2022, 64, 101460.	0.5	3
308	Importance of SV40 early 5′ distal sequences in directing heterologous gene expression. Gene, 1991, 106, 243-248.	1.0	2
309	Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging. F1000Research, 2014, 3, 256.	0.8	2
310	Young at Heart. Endocrinology, 2016, 157, 44-45.	1.4	2
311	Could calgranulins and advanced glycated end products potentiate acromegaly pathophysiology?. Growth Hormone and IGF Research, 2019, 46-47, 1-4.	0.5	2
312	Growth hormone receptor contributes to the activation of STAT5 in the hypothalamus of pregnant mice. Neuroscience Letters, 2022, 770, 136402.	1.0	2
313	Discovery and uses of pegvisomant: a growth hormone antagonist. Endokrynologia Polska, 2007, 58, 322-9.	0.3	2
314	Do altered energy metabolism or spontaneous locomotion â€~mediate' decelerated senescence?. Aging Cell, 2015, 14, 483-490.	3.0	1
315	Regulation of Growth Hormone and Action (Secretagogues). , 2010, , 412-453.		1
316	Chasing Methuselah: adult inducible GHRKO mice. Aging, 2022, undefined, .	1.4	1
317	Growth Hormone Antagonists: A Pharmacological Tool in Present and Future Therapies. , 2006, , 313-326.		0
318	Prof. Jens Sandahl Christiansen. Pituitary, 2016, 19, 115-116.	1.6	0
319	Growth Hormone. , 2016, , 325-358.e14.		Ο
320	Growth Hormone (GH). , 2017, , 116-126.		0
321	Growth hormone impact on adipose tissue and aging. Current Opinion in Endocrine and Metabolic Research, 2019, 5, 45-57.	0.6	Ο
322	The Effect of Growth Hormone Receptor Deficiency on Skeletal Muscle Insulin-like Growth Factor-I Protein Expression. Medicine and Science in Sports and Exercise, 2008, 40, S470.	0.2	0
323	The effects of diet cycling on longevity. FASEB Journal, 2010, 24, 888.5.	0.2	0
324	Differences among white adipose tissue depots in mice. FASEB Journal, 2010, 24, 659.14.	0.2	0

ЈОНИ Ј КОРСНІСК

#	Article	IF	CITATIONS
325	Metabolism and Metabolic Regulation. , 2011, , 451-463.		0
326	The Laron Mouse. , 2011, , 429-432.		0
327	Cardiac Function in GHR–/– Mice. , 2011, , 473-479.		Ο
328	Growth Hormone and Translational Research: From the 'Bench' to the 'Bedside'. Endocrinology and Metabolism, 2011, 26, 285.	1.3	0
329	Repression of GH signaling: One extended life to live!. Aging, 2013, 5, 723-724.	1.4	0
330	SAT-LB054 Growth Hormone Receptor (GHR) Antagonism Suppresses Hepatocellular Carcinoma Growth in a Syngeneic Mouse Model. Journal of the Endocrine Society, 2019, 3, .	0.1	0
331	MON-LB018 Depot-Specific Differences in Adipose Tissue Morphology with Laron Syndrome. Journal of the Endocrine Society, 2019, 3, .	0.1	0
332	Jens Sandahl Christiansen, DMSci, FRCPI (1948-2015). Pediatric Endocrinology Reviews, 2016, 13, 567.	1.2	0