List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials, 2006, 5, 741-747.	13.3	1,254
2	Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chemical Reviews, 2014, 114, 7487-7556.	23.0	1,090
3	Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nature Nanotechnology, 2008, 3, 234-239.	15.6	396
4	Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability. Langmuir, 2004, 20, 7665-7669.	1.6	382
5	Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today, 2014, 9, 271-304.	6.2	369
6	Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching. Nano Letters, 2008, 8, 3046-3051.	4.5	317
7	Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inchâ^'2 density. Nature Nanotechnology, 2008, 3, 402-407.	15.6	270
8	Magnetic nanoparticles as a catalyst vehicle for simple and easy recyclingElectronic supplementary information (ESI) available: XRD and FT-IR data, as well as the detailed experimental conditions for the catalytic hydroformylation reactions. See http://www.rsc.org/suppdata/nj/b2/b209391j/ New Journal of Chemistry, 2003, 27, 227-229.	1.4	261
9	A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 6050-6054.	7.2	258
10	Self-Ordered Anodic Aluminum Oxide Formed by H ₂ SO ₄ Hard Anodization. ACS Nano, 2008, 2, 302-310.	7.3	222
11	Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications. Small, 2006, 2, 561-568.	5.2	209
12	Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nature Communications, 2016, 7, 12011.	5.8	173
13	Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred <100> Etching Directions. Nano Letters, 2009, 9, 2519-2525.	4.5	165
14	Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires. ACS Nano, 2011, 5, 3222-3229.	7.3	163
15	A Continuous Process for Structurally Well-Defined Al ₂ O ₃ Nanotubes Based on Pulse Anodization of Aluminum. Nano Letters, 2008, 8, 2155-2160.	4.5	152
16	Spontaneous Current Oscillations during Hard Anodization of Aluminum under Potentiostatic Conditions. Advanced Functional Materials, 2010, 20, 21-27.	7.8	148
17	Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology, 2005, 16, 913-917.	1.3	147
18	Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography. Small, 2006, 2, 978-982.	5.2	134

#	Article	IF	CITATIONS
19	<i>In situ</i> control of oxygen vacancies in TiO ₂ by atomic layer deposition for resistive switching devices. Nanotechnology, 2013, 24, 295202.	1.3	116
20	Curved Silicon Nanowires with Ribbon-like Cross Sections by Metal-Assisted Chemical Etching. ACS Nano, 2011, 5, 5242-5248.	7.3	107
21	<i>In Situ</i> Determination of the Pore Opening Point during Wet-Chemical Etching of the Barrier Layer of Porous Anodic Aluminum Oxide: Nonuniform Impurity Distribution in Anodic Oxide. ACS Applied Materials & Interfaces, 2013, 5, 3441-3448.	4.0	100
22	Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology, 2010, 21, 485304.	1.3	99
23	α-RuCl3/Polymer Nanocomposites: The First Group of Intercalative Nanocomposites with Transition Metal Halides. Journal of the American Chemical Society, 2000, 122, 6629-6640.	6.6	83
24	Highâ€Density Periodically Ordered Magnetic Cobalt Ferrite Nanodot Arrays by Templateâ€Assisted Pulsed Laser Deposition. Advanced Functional Materials, 2009, 19, 3450-3455.	7.8	74
25	Nanostructured Ferroelectrics: Fabrication and Structure–Property Relations. Advanced Materials, 2011, 23, 4599-4613.	11.1	74
26	The anodization of aluminum for nanotechnology applications. Jom, 2010, 62, 57-63.	0.9	71
27	Ultrahigh Density Array of Epitaxial Ferroelectric Nanoislands on Conducting Substrates. Nano Letters, 2010, 10, 2141-2146.	4.5	69
28	Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects. ACS Nano, 2011, 5, 9104-9112.	7.3	69
29	Quantitative Analysis of the Grain Morphology in Self-Assembled Hexagonal Lattices. ACS Nano, 2008, 2, 913-920.	7.3	65
30	Tailorâ€Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal Nanoparticle Chains. Angewandte Chemie - International Edition, 2008, 47, 7004-7008.	7.2	61
31	Tribological properties of nanoporous anodic aluminum oxide film. Surface and Coatings Technology, 2010, 205, 1431-1437.	2.2	59
32	Non-Kolmogorovâ^'Avramiâ^'Ishibashi Switching Dynamics in Nanoscale Ferroelectric Capacitors. Nano Letters, 2010, 10, 1266-1270.	4.5	58
33	Capillary Condensation and Evaporation in Alumina Nanopores with Controlled Modulations. Langmuir, 2010, 26, 11894-11898.	1.6	57
34	First-Order Reversal Curve Probing of Spatially Resolved Polarization Switching Dynamics in Ferroelectric Nanocapacitors. ACS Nano, 2012, 6, 491-500.	7.3	50
35	Novel Threeâ€Ðimensional Nanoporous Alumina as a Template for Hierarchical TiO ₂ Nanotube Arrays. Small, 2013, 9, 1025-1029.	5.2	42
36	A novel quantum dot pillared layered transition metal sulfide: CdS–MoS2 semiconductor–metal nanohybrid. Journal of Materials Chemistry, 2002, 12, 614-618.	6.7	41

#	Article	IF	CITATIONS
37	Intercalation route to nano-hybrids: inorganic/organic-high Tc cuprate hybrid materials. Journal of Materials Chemistry, 1999, 9, 129-135.	6.7	40
38	Active doping of B in silicon nanostructures and development of a Si quantum dot solar cell. Nanotechnology, 2011, 22, 425203.	1.3	37
39	Airâ€Bridged Ohmic Contact on Vertically Aligned Si Nanowire Arrays: Application to Molecule Sensors. Advanced Materials, 2012, 24, 2284-2288.	11.1	35
40	Well-ordered large-area arrays of epitaxial ferroelectric (Bi,La)4Ti3O12 nanostructures fabricated by gold nanotube-membrane lithography. Applied Physics Letters, 2005, 86, 152906.	1.5	32
41	Polymer Nanotubules Obtained by Layerâ€by‣ayer Deposition within AAOâ€Membrane Templates with Subâ€100â€nm Pore Diameters. Small, 2010, 6, 2683-2689.	5.2	32
42	Template route toward a novel nanostructured superionic conductor film; AgI nanorod/ \hat{I}^3 -Al2O3. Chemical Communications, 2001, , 2530-2531.	2.2	29
43	A continuous process for Si nanowires with prescribed lengths. Journal of Materials Chemistry, 2011, 21, 15889.	6.7	27
44	Adsorption in alumina pores open at one and at both ends. Nanoscale, 2015, 7, 2587-2596.	2.8	24
45	Direct Probing of Polarization Charge at Nanoscale Level. Advanced Materials, 2018, 30, 1703675.	11.1	23
46	A versatile ultra-thin Au nanomesh from a reusable anodic aluminium oxide (AAO) membrane. Journal of Materials Chemistry C, 2013, 1, 5330.	2.7	22
47	lonic Current Rectification of Porous Anodic Aluminum Oxide (AAO) with a Barrier Oxide Layer. ACS Nano, 2020, 14, 13727-13738.	7.3	22
48	Origins of domain wall pinning in ferroelectric nanocapacitors. Nano Convergence, 2014, 1, .	6.3	20
49	Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach. Nanotechnology, 2008, 19, 495706.	1.3	18
50	Individual switching of film-based nanoscale epitaxial ferroelectric capacitors. Journal of Applied Physics, 2010, 108, .	1.1	18
51	Local probing of electrochemically induced negative differential resistance in TiO2memristive materials. Nanotechnology, 2013, 24, 085702.	1.3	18
52	Adsorption on Highly Ordered Porous Alumina. Journal of Low Temperature Physics, 2016, 185, 138-160.	0.6	18
53	Anodized Aluminum Oxide/Polydimethylsiloxane Hybrid Mold for Rollâ€ŧoâ€Roll Nanoimprinting. Advanced Functional Materials, 2018, 28, 1800197.	7.8	18
54	Coherent mode splitting of microwave-induced fluxons inHgl2â^'intercalatedBi2Sr2CaCu2O8+δsingle crystals. Physical Review B, 2001, 63, .	1.1	17

#	Article	IF	CITATIONS
55	High efficiency n-ZnO/p-Si core–shell nanowire photodiode based on well-ordered Si nanowire array with smooth surface. Materials Science in Semiconductor Processing, 2014, 27, 297-302.	1.9	17
56	Nanostructured Metal Surfaces Fabricated by a Nonlithographic Template Method. Langmuir, 2004, 20, 287-290.	1.6	16
57	Towards the limit of ferroelectric nanostructures: switchable sub-10 nm nanoisland arrays. Journal of Materials Chemistry C, 2013, 1, 5299.	2.7	15
58	Microstructured horizontal alumina pore arrays as growth templates for large area few and single nanowire devices. Physica Status Solidi - Rapid Research Letters, 2008, 2, 59-61.	1.2	12
59	Cross talk by extensive domain wall motion in arrays of ferroelectric nanocapacitors. Applied Physics Letters, 2011, 99, 202901.	1.5	10
60	Metal-assisted chemically etched silicon nanopillars hosting telecom photon emitters. Journal of Applied Physics, 2022, 132, .	1.1	10
61	Growth and characterization of epitaxial ferroelectric lanthanum-substituted bismuth titanate nanostructures with three different orientations. Journal of Applied Physics, 2005, 98, 124302.	1.1	9
62	Domain structures and piezoelectric properties of Pb(Zr0.2Ti0.8)O3 nanocapacitors. Journal of Applied Physics, 2010, 108, .	1.1	9
63	Fabrication of hierarchical structures on a polymer surface using patterned anodic aluminum oxide as a replication master. Thin Solid Films, 2008, 516, 3431-3435.	0.8	8
64	Adsorption on Ordered and Disordered Duplex Layers of Porous Anodic Alumina. Langmuir, 2015, 31, 4895-4905.	1.6	8
65	A new cointercalated superconducting bismuth cuprate, (Hgl2)0.5l0.5Bi1.85Pb0.35Sr1.9Ca2.1Cu3.1O10 + δ. Journal of Materials Chemistry, 2000, 10, 1679-1684.	6.7	6
66	Adsorption of argon on mesoporous anodic alumina. Adsorption, 2014, 20, 889-897.	1.4	6
67	Structural Engineering of Porous Anodic Aluminum Oxide (AAO) and Applications. Springer Series in Materials Science, 2015, , 107-153.	0.4	6
68	Anodically Induced Chemical Etching of GaAs Wafers for a GaAs Nanowire-Based Flexible Terahertz Wave Emitter. ACS Applied Materials & Interfaces, 2020, 12, 50703-50712.	4.0	6
69	Formation of a Top Electrode on Vertical Si Nanowire Devices Using Graphene as a Supporting Layer. Applied Physics Express, 2012, 5, 105103.	1.1	5
70	Tunneling characteristics of I- and Hgl2-intercalated Bi2Sr2CaCu2O8+x single crystals. Physica B: Condensed Matter, 2000, 284-288, 1844-1845.	1.3	3
71	Origin of the Metallization ofc-Axis Resistivity upon lodine Intercalation into Bi2Sr2CaCu2O8+δ. Journal of Physical Chemistry B, 2001, 105, 5174-5177.	1.2	3
72	Adsorption on alumina nanopores with conical shape. Nanoscale, 2018, 10, 18300-18305.	2.8	3

#	Article	IF	CITATIONS
73	Quantitative Local Probing of Polarization with Application on HfO ₂ â€Based Thin Films. Small Methods, 2021, 5, e2100781.	4.6	3
74	Evolution of crystal and electronic structures of Sr2CuO3 upon fluorination reaction. Physica C: Superconductivity and Its Applications, 1999, 322, 93-99.	0.6	2
75	Intercalation Route to Novel Superconducting Nano-Hybrids. Molecular Crystals and Liquid Crystals, 2000, 341, 479-484.	0.3	2
76	Dynamics of microwave-induced fluxons in Hgl2-intercalated Bi2Sr2CaCu2O8+l̂´ Josephson stacks. Physica C: Superconductivity and Its Applications, 2001, 362, 97-101.	0.6	2
77	Novel non-lithographic large area fabrication method to generate various polymeric nanostructures. Studies in Surface Science and Catalysis, 2003, 146, 85-88.	1.5	1
78	Nanosculpting of complex oxides by massive ionic transfer. Nanotechnology, 2016, 27, 505703.	1.3	1
79	Metal nanotube membranes and their lithographic applications. , 2006, , .		0
80	Inside Cover: Tailor-Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal Nanoparticle Chains (Angew. Chem. Int. Ed. 37/2008). Angewandte Chemie - International Edition, 2008, 47, 6926-6926.	7.2	0
81	Innentitelbild: Tailor-Made Inorganic Nanopeapods: Structural Design of Linear Noble Metal Nanoparticle Chains (Angew. Chem. 37/2008). Angewandte Chemie, 2008, 120, 7032-7032.	1.6	0