Richard Brain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using lifeâ€history trait variation to inform ecological risk assessments for threatened and endangered plant species. Integrated Environmental Assessment and Management, 2023, 19, 213-223.	1.6	1
2	Characterization of fieldâ€scale spray drift deposition and nonâ€ŧarget plant biological sensitivity: A corn herbicide (mesotrione/sâ€metolochlor) case study. Pest Management Science, 2022, , .	1.7	4
3	Development of a US national-scale, mixed-source, pesticide, rural well database for use in drinking water risk assessment: an atrazine case study. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
4	Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. Science of the Total Environment, 2021, 755, 142589.	3.9	15
5	Integrating Exposure and Effect Distributions with the Ecotoxicity Risk Calculator: Case Studies with Crop Protection Products. Integrated Environmental Assessment and Management, 2021, 17, 321-330.	1.6	7
6	Toxicity of Atrazine to Marine Invertebrates Under Flow-Through Conditions—Eastern Oyster (Crassostrea virginica) and Mysid Shrimp (Americamysis bahia). Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	9
7	The Press Sells Newspapers, We Should Not Sell Ecotoxicology. Environmental Toxicology and Chemistry, 2021, 40, 1239-1240.	2.2	5
8	A Method to Screen for Consistency of Effect in Laboratory Toxicity Tests: A Case Study with Anurans and the Herbicide Atrazine. Archives of Environmental Contamination and Toxicology, 2021, 81, 123-132.	2.1	1
9	Evaluating a developmental endocrine toxicity assay for Blanchard's cricket frog (Acris blanchardi) in outdoor enclosures. Science of the Total Environment, 2021, 767, 145444.	3.9	1
10	Spray drift deposition comparison of fluorimetry and analytical confirmation techniques. Pest Management Science, 2021, 77, 4192-4199.	1.7	8
11	Acute and early life-stage toxicity of atrazine in sheepshead minnow (Cyprinodon variegatus). Ecotoxicology and Environmental Safety, 2021, 218, 112303.	2.9	10
12	Assessment of risks to listed species from the use of atrazine in the USA: a perspective. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 223-306.	2.9	18
13	Applying a Hybrid Modeling Approach to Evaluate Potential Pesticide Effects and Mitigation Effectiveness for an Endangered Fish in Simulated Oxbow Habitats. Environmental Toxicology and Chemistry, 2021, 40, 2615-2628.	2.2	2
14	Development of a mixed-source, single pesticide database for use in ecological risk assessment: quality control and data standardization practices. Environmental Monitoring and Assessment, 2021, 193, 827.	1.3	6
15	Correcting for Phylogenetic Autocorrelation in Species Sensitivity Distributions. Integrated Environmental Assessment and Management, 2020, 16, 53-65.	1.6	13
16	Context and Perspective in Ecotoxicology. Environmental Toxicology and Chemistry, 2020, 39, 1655-1655.	2.2	5
17	How to Make Voluntary Species Conservation Work for Pesticide Registrations. Integrated Environmental Assessment and Management, 2020, 16, 790-792.	1.6	0
18	The Comprehensive Aquatic Systems Model (CASM): Advancing Computational Capability for Ecosystem Simulation. Environmental Toxicology and Chemistry, 2020, 39, 2298-2303.	2.2	6

RICHARD BRAIN

#	Article	IF	CITATIONS
19	Anthropogenic factors affecting wildlife species status outcomes: why the fixation on pesticides?. Environmental Science and Pollution Research, 2020, , 1.	2.7	8
20	Author's Reply. Integrated Environmental Assessment and Management, 2019, 15, 497-498.	1.6	0
21	A Probabilistic Coâ€Occurrence Approach for Estimating Likelihood of Spatial Overlap Between Listed Species Distribution and Pesticide Use Patterns. Integrated Environmental Assessment and Management, 2019, 15, 936-947.	1.6	7
22	A Hybrid Individualâ€Based and Food Web–Ecosystem Modeling Approach for Assessing Ecological Risks to the Topeka Shiner (Notropis topeka): A Case Study with Atrazine. Environmental Toxicology and Chemistry, 2019, 38, 2243-2258.	2.2	5
23	Strength of methods assessment for aquatic primary producer toxicity data: A critical review of atrazine studies from the peer-reviewed literature. Science of the Total Environment, 2019, 685, 1221-1239.	3.9	11
24	Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach. Ecological Modelling, 2019, 405, 1-14.	1.2	8
25	The agro-enabled urban revolution, pesticides, politics, and popular culture: a case study of land use, birds, and insecticides in the USA. Environmental Science and Pollution Research, 2019, 26, 21717-21735.	2.7	19
26	Comparative Analysis of Plant Demographic Traits Across Species of Different Conservation Concern: Implications for Pesticide Risk Assessment. Environmental Toxicology and Chemistry, 2019, 38, 2043-2052.	2.2	11
27	Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine. Science of the Total Environment, 2019, 678, 239-252.	3.9	24
28	Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Critical Reviews in Toxicology, 2019, 49, 670-709.	1.9	24
29	Sibling rivalry, peace, love, and environmental debate in the 21st century. Integrated Environmental Assessment and Management, 2018, 14, 302-303.	1.6	0
30	Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. Chemosphere, 2018, 205, 126-136.	4.2	9
31	Collaborative research among academia, business, and government. Integrated Environmental Assessment and Management, 2018, 14, 152-154.	1.6	4
32	Derivation of avian dermal LD50 values for dermal exposure models using in vitro percutaneous absorption of [14C]-atrazine through rat, mallard, and northern bobwhite full thickness skin. Science of the Total Environment, 2018, 630, 517-525.	3.9	9
33	Incorporating the joint toxicity of coâ€applied pesticides into the ecological risk assessment process. Integrated Environmental Assessment and Management, 2018, 14, 79-91.	1.6	43
34	Modeling the effects of thiamethoxam on Midwestern farm ponds and emergent wetlands. Environmental Toxicology and Chemistry, 2018, 37, 738-754.	2.2	12
35	Adapting population models for application in pesticide risk assessment: A case study with Mead's milkweed. Environmental Toxicology and Chemistry, 2018, 37, 2235-2245.	2.2	6
36	Assessing and mitigating simulated population-level effects of 3 herbicides to a threatened plant: Application of a species-specific population model ofBoltonia decurrens. Environmental Toxicology and Chemistry, 2018, 37, 1545-1555.	2.2	7

RICHARD BRAIN

#	Article	IF	CITATIONS
37	Relative Abundance Trends of Bird Populations in High Intensity Croplands in the Central United States. Integrated Environmental Assessment and Management, 2018, 14, 692-702.	1.6	9
38	Variability in Nontarget Terrestrial Plant Studies Should Inform Endpoint Selection. Integrated Environmental Assessment and Management, 2018, 14, 639-648.	1.6	11
39	Data quality scoring system for microcosm and mesocosm studies used to derive a level of concern for atrazine. Integrated Environmental Assessment and Management, 2018, 14, 489-497.	1.6	5
40	Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 2017, 36, 2327-2334.	2.2	7
41	Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione. Environmental Toxicology and Chemistry, 2017, 36, 2465-2475.	2.2	23
42	Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant, <i>Boltonia decurrens</i> . Environmental Toxicology and Chemistry, 2017, 36, 480-491.	2.2	14
43	A weightâ€ofâ€evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities. Integrated Environmental Assessment and Management, 2017, 13, 686-701.	1.6	19
44	Developing population models: A systematic approach for pesticide risk assessment using herbaceous plants as an example. Science of the Total Environment, 2017, 599-600, 1929-1938.	3.9	16
45	Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides. Ecotoxicology and Environmental Safety, 2016, 132, 250-259.	2.9	28
46	In Response : Resolving the perception of bias in a discipline founded on objectivity—A perspective from industry. Environmental Toxicology and Chemistry, 2016, 35, 1070-1072.	2.2	6
47	Recovery of terrestrial plants in vegetative vigor and seedling emergence tests from exposure to atrazine. Environmental Toxicology and Chemistry, 2016, 35, 1284-1296.	2.2	7
48	A probabilistic approach for estimating the spatial extent of pesticide agricultural use sites and potential coâ€occurrence with listed species for use in ecological risk assessments. Integrated Environmental Assessment and Management, 2016, 12, 315-327.	1.6	9
49	Effects of pulsed atrazine exposures on autotrophic community structure, biomass, and production in fieldâ€based stream mesocosms. Environmental Toxicology and Chemistry, 2016, 35, 660-675.	2.2	30
50	Risk assessment considerations with regard to the potential impacts of pesticides on endangered species. Integrated Environmental Assessment and Management, 2015, 11, 102-117.	1.6	15
51	A comparative study of the modeled effects of atrazine on aquatic plant communities in midwestern streams. Environmental Toxicology and Chemistry, 2015, 34, 2590-2602.	2.2	15
52	Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis). Environmental Pollution, 2015, 206, 324-331.	3.7	13
53	The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. International Journal of Life Cycle Assessment, 2015, 20, 765-776.	2.2	62
54	Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure. Ecotoxicology and Environmental Safety, 2015, 118, 204-216.	2.9	15

RICHARD BRAIN

#	Article	IF	CITATIONS
55	Spatial and temporal variation of algal assemblages in six Midwest agricultural streams having varying levels of atrazine and other physicochemical attributes. Science of the Total Environment, 2015, 505, 65-89.	3.9	22
56	Assessment of periphyton, aquatic macrophytes, benthic communities, and physical habitat in midwestern United States streams coinciding with varying historical concentrations of atrazine. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1091-1099.	0.9	2
57	Optimization of culturing conditions for toxicity testing with the alga <i>Oophila</i> sp. (Chlorophyceae), an amphibian endosymbiont. Environmental Toxicology and Chemistry, 2014, 33, 2566-2575.	2.2	8
58	Response of the green alga <i>Oophila</i> sp., a salamander endosymbiont, to a PSIIâ€inhibitor under laboratory conditions. Environmental Toxicology and Chemistry, 2014, 33, 1858-1864.	2.2	10
59	Effects of repeated pulsed herbicide exposures on the growth of aquatic macrophytes. Environmental Toxicology and Chemistry, 2013, 32, 193-200.	2.2	39
60	Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment. Science of the Total Environment, 2013, 458-460, 125-139.	3.9	38
61	Sensitivity of a green alga to atrazine is not enhanced by previous acute exposure. Environmental Pollution, 2013, 181, 325-328.	3.7	17
62	Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions. Ecotoxicology, 2013, 22, 1367-1383.	1.1	19
63	Modeling the potential effects of atrazine on aquatic communities in midwestern streams. Environmental Toxicology and Chemistry, 2013, 32, 2402-2411.	2.2	18
64	Influence of light intensity on the toxicity of atrazine to the submerged freshwater aquatic macrophyte Elodea canadensis. Ecotoxicology and Environmental Safety, 2012, 79, 55-61.	2.9	13
65	Recovery of photosynthesis and growth rate in green, blue–green, and diatom algae after exposure to atrazine. Environmental Toxicology and Chemistry, 2012, 31, 2572-2581.	2.2	36
66	Recovery of duckweed from timeâ€varying exposure to atrazine. Environmental Toxicology and Chemistry, 2012, 31, 1121-1128.	2.2	25
67	Targets, Effects and Risks in Aquatic Plants Exposed to Veterinary Antibiotics. ACS Symposium Series, 2010, , 169-189.	0.5	10
68	Exploring <i>Lemna gibba</i> thresholds to nutrient and chemical stressors: Differential effects of triclosan on internal stoichiometry and nitrate uptake across a nitrogen:phosphorus gradient. Environmental Toxicology and Chemistry, 2010, 29, 2363-2370.	2.2	10
69	Photosynthetic Redox Imbalance Influences Flavonoid Biosynthesis in <i>Lemna gibba</i> . Plant, Cell and Environment, 2010, 33, 1205-19.	2.8	39
70	Conservation Physiology of the Plethodontid Salamanders Eurycea nana and E. sosorum: Response to Declining Dissolved Oxygen. Copeia, 2010, 2010, 540-553.	1.4	13
71	Detectability of fifteen aquatic micro/mesocosms. Ecotoxicology, 2009, 18, 838-845.	1.1	13
72	Probabilistic ecological hazard assessment of parabens using <i>Daphnia magna</i> and <i>Pimephales promelas</i> . Environmental Toxicology and Chemistry, 2009, 28, 2744-2753.	2.2	141

#	Article	IF	CITATIONS
73	INFLUENCE OF NITROGEN AND PHOSPHORUS CONCENTRATIONS AND RATIOS ON LEMNA GIBBA GROWTH RESPONSES TO TRICLOSAN IN LABORATORY AND STREAM MESOCOSM EXPERIMENTS. Environmental Toxicology and Chemistry, 2009, 28, 2610.	2.2	29
74	Occurrence of pharmaceuticals and personal care products in fish: Results of a national pilot study in the united states. Environmental Toxicology and Chemistry, 2009, 28, 2587-2597.	2.2	415
75	Comparison of the Hazards Posed to Amphibians by the Glyphosate Spray Control Program Versus the Chemical and Physical Activities of Coca Production in Colombia. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 937-948.	1.1	19
76	Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks. Reviews of Environmental Contamination and Toxicology, 2008, 192, 67-115.	0.7	116
77	Herbicidal Effects of Sulfamethoxazole in <i>Lemna gibba</i> : Using <i>p</i> -Aminobenzoic Acid As a Biomarker of Effect. Environmental Science & Technology, 2008, 42, 8965-8970.	4.6	91
78	Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms. Aquatic Toxicology, 2007, 85, 229-240.	1.9	112
79	Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicology and Environmental Safety, 2007, 67, 128-139.	2.9	97
80	A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nature Protocols, 2007, 2, 979-987.	5.5	88
81	Herbicidal Effects of Statin Pharmaceuticals inLemna gibba. Environmental Science & Technology, 2006, 40, 5116-5123.	4.6	58
82	Probabilistic ecological hazard assessment: Evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotoxicology and Environmental Safety, 2006, 64, 128-135.	2.9	60
83	Microcosm Evaluation of the Toxicity and Risk to Aquatic Macrophytes from Perfluorooctane Sulfonic Acid. Archives of Environmental Contamination and Toxicology, 2005, 48, 329-337.	2.1	26
84	Microcosm Evaluation of the Fate, Toxicity, and Risk to Aquatic Macrophytes from Perfluorooctanoic Acid (PFOA). Archives of Environmental Contamination and Toxicology, 2005, 49, 307-316.	2.1	23
85	Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum. Environmental Pollution, 2005, 133, 389-401.	3.7	29
86	Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms. Environmental Pollution, 2005, 138, 425-442.	3.7	56
87	Exposure assessment and microcosm fate of selected selective serotonin reuptake inhibitors. Regulatory Toxicology and Pharmacology, 2005, 42, 313-323.	1.3	50
88	EFFECTS OF 25 PHARMACEUTICAL COMPOUNDS TO LEMNA GIBBA USING A SEVEN-DAY STATIC-RENEWAL TEST. Environmental Toxicology and Chemistry, 2004, 23, 371.	2.2	261
89	Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 2004, 203, 27-40.	2.0	157
90	Structural and Functional Responses of Plankton to a Mixture of Four Tetracyclines in Aquatic Microcosms. Environmental Science & Technology, 2004, 38, 6430-6439.	4.6	61

#	Article	IF	CITATIONS
91	Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regulatory Toxicology and Pharmacology, 2004, 39, 158-183.	1.3	362
92	Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquatic Toxicology, 2004, 70, 23-40.	1.9	146
93	Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 2003, 144, 383-395.	0.4	389