Ignacio Oropesa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364664/publications.pdf

Version: 2024-02-01

759055 642610 31 552 12 23 citations h-index g-index papers 34 34 34 592 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery. Journal of Surgical Research, 2011, 171, e81-e95.	0.8	124
2	EVA: Laparoscopic Instrument Tracking Based on Endoscopic Video Analysis for Psychomotor Skills Assessment. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 1029-1039.	1.3	86
3	Relevance of Motion-Related Assessment Metrics in Laparoscopic Surgery. Surgical Innovation, 2013, 20, 299-312.	0.4	39
4	Objective assessment based on motion-related metrics and technical performance in laparoscopic suturing. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 307-314.	1.7	34
5	BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces. Frontiers in Neuroscience, 2020, 14, 568104.	1.4	32
6	Face, content, and construct validity of the EndoViS training system for objective assessment of psychomotor skills of laparoscopic surgeons. Surgical Endoscopy and Other Interventional Techniques, 2015, 29, 3392-3403.	1.3	29
7	Supervised classification of psychomotor competence in minimally invasive surgery based on instruments motion analysis. Surgical Endoscopy and Other Interventional Techniques, 2014, 28, 657-670.	1.3	27
8	Objective classification of psychomotor laparoscopic skills of surgeons based on three different approaches. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 27-40.	1.7	25
9	Automated hexahedral meshing of knee cartilage structures – application to data from the osteoarthritis initiative. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1543-1553.	0.9	24
10	Laparoscopic video analysis for training and image-guided surgery. Minimally Invasive Therapy and Allied Technologies, 2011, 20, 311-320.	0.6	22
11	Systems and technologies for objective evaluation of technical skills in laparoscopic surgery. Minimally Invasive Therapy and Allied Technologies, 2014, 23, 40-51.	0.6	17
12	Feasibility of tracking laparoscopic instruments in a box trainer using a Leap Motion Controller. Measurement: Journal of the International Measurement Confederation, 2016, 80, 115-124.	2.5	16
13	Utilidad de un sistema de seguimiento óptico de instrumental en cirugÃa laparoscópica para evaluación de destrezas motoras. CirugÃa Española, 2014, 92, 421-428.	0.1	14
14	Technologies for Monitoring Lifestyle Habits Related to Brain Health: A Systematic Review. Sensors, 2019, 19, 4183.	2.1	9
15	Speech-Based Surgical Phase Recognition for Non-Intrusive Surgical Skills' Assessment in Educational Contexts. Sensors, 2021, 21, 1330.	2.1	8
16	TELMA: Technology-enhanced learning environment for minimally invasive surgery. Journal of Surgical Research, 2013, 182, 21-29.	0.8	7
17	Interpretation of motion analysis of laparoscopic instruments based on principal component analysis in box trainer settings. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3096-3107.	1.3	6
18	Linear vs Nonlinear Classification of Social Joint Attention in Autism Using VR P300-Based Brain Computer Interfaces. IFMBE Proceedings, 2020, , 1869-1874.	0.2	5

#	Article	IF	CITATIONS
19	Virtual Reality Simulators for Objective Evaluation on Laparoscopic Surgery: Current Trends and Benefits , 2010, , .		4
20	Video-endoscopic image analysis for 3D reconstruction of the surgical scene. IFMBE Proceedings, 2009, , 923-926.	0.2	4
21	TELMA: Technology enhanced learning environment for Minimally Invasive Surgery. Procedia Computer Science, 2011, 3, 316-321.	1.2	3
22	Can effective pedagogy be ensured in minimally invasive surgery e-learning?. Minimally Invasive Therapy and Allied Technologies, 2020, , $1-11$.	0.6	3
23	Technical Evaluation of a Third Generation Optical Pose Tracker for Motion Analysis and Image-Guided Surgery. Lecture Notes in Computer Science, 2013, , 75-82.	1.0	3
24	A New Immersive Virtual Reality Station for Cardiopulmonary Resuscitation Objective Structured Clinical Exam Evaluation. Sensors, 2022, 22, 4913.	2.1	3
25	Orthogonal cameras system for tracking of laparoscopic instruments in training environments. CirugAa Y Cirujanos, 2018, 86, 548-555.	0.1	2
26	Correlating Personal Resourcefulness and Psychomotor Skills: An Analysis of Stress, Visual Attention and Technical Metrics. Sensors, 2022, 22, 837.	2.1	2
27	Endoscopic Video Images Analysis for Surgical Training and Image-Guided Surgery. IFMBE Proceedings, 2009, , 251-254.	0.2	1
28	Minimally invasive surgical video analysis: a powerful tool for surgical training and navigation. Studies in Health Technology and Informatics, 2013, 190, 33-5.	0.2	1
29	Laparoscopic Video and Ultrasounds Image Processing in Minimally Invasive Pancreatic Surgeries. Smart Innovation, Systems and Technologies, 2016, , 333-343.	0.5	0
30	EVA: Endoscopic Video Analysis of the Surgical Scene for the Assessment of MIS Psychomotor Skills. IFMBE Proceedings, 2014, , 52-56.	0.2	0
31	Preliminary Validation of an Editable Virtual Reality Simulator for Minimally Invasive Surgical Training. IFMBE Proceedings, 2020, , 1009-1017.	0.2	О