Toshihide Yamashita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synaptic and Genetic Bases of Impaired Motor Learning Associated with Modified Experience-Dependent Cortical Plasticity in Heterozygous <i>Reeler</i> Mutants. Cerebral Cortex, 2022, 32, 504-519.	2.9	1
2	Complement cascade functions during brain development and neurodegeneration. FEBS Journal, 2022, 289, 2085-2109.	4.7	19
3	<scp>RGMa</scp> Signal in Macrophages Induces Neutrophilâ€Related Astrocytopathy in <scp>NMO</scp> . Annals of Neurology, 2022, 91, 532-547.	5.3	7
4	Editorial: Genes and Aging: From Bench-to-Bedside. Frontiers in Aging Neuroscience, 2022, 14, 886967.	3.4	0
5	Origin of Multisynaptic Corticospinal Pathway to Forelimb Segments in Macaques and Its Reorganization After Spinal Cord Injury. Frontiers in Neural Circuits, 2022, 16, 847100.	2.8	3
6	Intravital Imaging Reveals the Ameliorating Effect of Colchicine in a Photothrombotic Stroke Model via Inhibition of Neutrophil Recruitment. Translational Stroke Research, 2022, , .	4.2	0
7	Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury. Neuroscience Research, 2022, 181, 22-38.	1.9	2
8	Neuroplasticity related to chronic pain and its modulation by microglia. Inflammation and Regeneration, 2022, 42, 15.	3.7	26
9	ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. Journal of Experimental Medicine, 2022, 219, .	8.5	11
10	Anti-repulsive guidance molecule: An antibody treatment in spinal cord injury. , 2022, , 347-357.		0
11	Neural circuit repair after central nervous system injury. International Immunology, 2021, 33, 301-309.	4.0	8
12	Mechanisms and significance of microglia–axon interactions in physiological and pathophysiological conditions. Cellular and Molecular Life Sciences, 2021, 78, 3907-3919.	5.4	7
13	Neuroprotective function of microglia in the developing brain. Neuronal Signaling, 2021, 5, NS20200024.	3.2	17
14	Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson's disease. Cell Death and Disease, 2021, 12, 181.	6.3	17
15	Age-dependent decline in remyelination capacity is mediated by apelin–APJ signaling. Nature Aging, 2021, 1, 284-294.	11.6	18
16	Increased expression of Netrin-4 is associated with allodynia in a trigeminal neuropathic pain model rats by infraorbital nerve injury. PLoS ONE, 2021, 16, e0251013.	2.5	6
17	Arid5a Promotes Immune Evasion by Augmenting Tryptophan Metabolism and Chemokine Expression. Cancer Immunology Research, 2021, 9, 862-876.	3.4	15
18	Protocol for mouse adult neural stem cell isolation and culture. STAR Protocols, 2021, 2, 100522.	1.2	17

#	Article	IF	CITATIONS
19	An enhanced therapeutic effect of repetitive transcranial magnetic stimulation combined with antibody treatment in a primate model of spinal cord injury. PLoS ONE, 2021, 16, e0252023.	2.5	3
20	Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death and Disease, 2021, 12, 766.	6.3	11
21	Function of Lymphocytes in Oligodendrocyte Development. Neuroscientist, 2020, 26, 74-86.	3.5	4
22	Proteomic analysis of protein changes in plasma by balloon test occlusion. Journal of Clinical Neuroscience, 2020, 72, 397-401.	1.5	2
23	Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological Sciences, 2020, 144, 102-118.	2.5	19
24	Peroxisome Deficiency Impairs BDNF Signaling and Memory. Frontiers in Cell and Developmental Biology, 2020, 8, 567017.	3.7	7
25	Repulsive Guidance Molecule A Regulates Adult Neurogenesis Via the Neogenin Receptor. Neuroscience Insights, 2020, 15, 263310552094848.	1.6	3
26	Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death and Disease, 2020, 11, 655.	6.3	30
27	Proton-sensing receptor GPR132 facilitates migration of astrocytes. Neuroscience Research, 2020, 170, 106-113.	1.9	0
28	Protocol for Co-culture of Microglia with Axons. STAR Protocols, 2020, 1, 100111.	1.2	3
29	Netrin-G1 Regulates Microglial Accumulation along Axons and Supports the Survival of Layer V Neurons in the Postnatal Mouse Brain. Cell Reports, 2020, 31, 107580.	6.4	28
30	Recent insights into peroxisome biogenesis and associated diseases. Journal of Cell Science, 2020, 133, .	2.0	41
31	Repulsive Guidance Molecule A Suppresses Adult Neurogenesis. Stem Cell Reports, 2020, 14, 677-691.	4.8	13
32	Immunotherapies in Huntington's disease and α-Synucleinopathies. Frontiers in Immunology, 2020, 11, 337.	4.8	23
33	A peroxisome deficiency–induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. Journal of Biological Chemistry, 2020, 295, 5321-5334.	3.4	12
34	Neurons promote encephalitogenic CD4+ lymphocyte infiltration in experimental autoimmune encephalomyelitis. Scientific Reports, 2020, 10, 7354.	3.3	7
35	Alterations in Chromatin Structure and Function in the Microglia. Frontiers in Cell and Developmental Biology, 2020, 8, 626541.	3.7	7
36	Microglial depletion under thalamic hemorrhage ameliorates mechanical allodynia and suppresses aberrant axonal sprouting. JCI Insight, 2020, 5, .	5.0	20

#	Article	IF	CITATIONS
37	B lymphocytes: Crucial contributors to brain development and neurological diseases. Neuroscience Research, 2019, 139, 37-41.	1.9	12
38	Increased Expression of Fibronectin Leucine-Rich Transmembrane Protein 3 in the Dorsal Root Ganglion Induces Neuropathic Pain in Rats. Journal of Neuroscience, 2019, 39, 7615-7627.	3.6	11
39	Roles of Effector T Cells in Neurological Autoimmunity. , 2019, , 63-81.		0
40	Comparison of gene expression profile of the spinal cord of sprouting-capable neonatal and sprouting-incapable adult mice. BMC Genomics, 2019, 20, 619.	2.8	9
41	The Effects of Leptin on Glial Cells in Neurological Diseases. Frontiers in Neuroscience, 2019, 13, 828.	2.8	33
42	Neuropilin-1-mediated pruning of corticospinal tract fibers is required for motor recovery after spinal cord injury. Cell Death and Disease, 2019, 10, 67.	6.3	26
43	Anti-repulsive guidance molecule-a antibody treatment and repetitive transcranial magnetic stimulation have synergistic effects on motor recovery after spinal cord injury. Neuroscience Letters, 2019, 709, 134329.	2.1	5
44	Microglia suppress the secondary progression of autoimmune encephalomyelitis. Glia, 2019, 67, 1694-1704.	4.9	38
45	Myeloid-Derived Suppressor Cells Infiltrate the Brain and Suppress Neuroinflammation in a Mouse Model of Focal Traumatic Brain Injury. Neuroscience, 2019, 406, 457-466.	2.3	17
46	Mechanism of neuroaxonal degeneration: from molecular signaling to therapeutic applications. Neuroscience Research, 2019, 139, 1-2.	1.9	0
47	Neogenin is a Determining Factor for Regenerating Neurons Following Spinal Cord Injury. Neuroscience, 2019, 408, 448-449.	2.3	6
48	Treatment With the Neutralizing Antibody Against Repulsive Guidance Molecule-a Promotes Recovery From Impaired Manual Dexterity in a Primate Model of Spinal Cord Injury. Cerebral Cortex, 2019, 29, 561-572.	2.9	39
49	Circulating transforming growth factor- \hat{l}^21 facilitates remyelination in the adult central nervous system. ELife, 2019, 8, .	6.0	44
50	Development of Drug that Facilitates Neuronal Rewiring in the Central Nervous System. The Japanese Journal of Rehabilitation Medicine, 2019, 56, 702-705.	0.0	0
51	The Soluble Form of LOTUS inhibits Nogo Receptor-Mediated Signaling by Interfering with the Interaction Between Nogo Receptor Type 1 and p75 Neurotrophin Receptor. Journal of Neuroscience, 2018, 38, 2589-2604.	3.6	18
52	B-1a lymphocytes promote oligodendrogenesis during brain development. Nature Neuroscience, 2018, 21, 506-516.	14.8	62
53	Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis. EBioMedicine, 2018, 27, 71-85.	6.1	26
54	Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica. Scientific Reports, 2018, 8, 34.	3.3	17

#	Article	IF	CITATIONS
55	Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death and Disease, 2018, 9, 460.	6.3	38
56	Developmental abnormality contributes to cortex-dependent motor impairments and higher intracortical current requirement in the reeler homozygous mutants. Brain Structure and Function, 2018, 223, 2575-2587.	2.3	5
57	An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. Journal of Neuroscience, 2018, 38, 613-630.	3.6	45
58	Spatial organization of genome architecture in neuronal development and disease. Neurochemistry International, 2018, 119, 49-56.	3.8	13
59	Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight, 2018, 3, .	5.0	82
60	Inflammatory projections after focal brain injury trigger neuronal network disruption: An 18F-DPA714 PET study in mice. Neurolmage: Clinical, 2018, 20, 946-954.	2.7	12
61	Methylation dependent down-regulation of GOS2 leads to suppression of invasion and improved prognosis of IDH1-mutant glioma. PLoS ONE, 2018, 13, e0206552.	2.5	8
62	Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Frontiers in Neuroscience, 2018, 12, 778.	2.8	78
63	Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death and Disease, 2018, 9, 1061.	6.3	34
64	Myotube-derived factor promotes oligodendrocyte precursor cell proliferation. Biochemical and Biophysical Research Communications, 2018, 500, 609-613.	2.1	3
65	The role of immune cells in brain development and neurodevelopmental diseases. International Immunology, 2018, 30, 437-444.	4.0	48
66	Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Science Alliance, 2018, 1, e201800062.	2.8	19
67	The circulating TGF-beta contributes to the remyelination in CNS. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-97.	0.0	0
68	Leptin sustains spontaneous remyelination in the adult central nervous system. Scientific Reports, 2017, 7, 40397.	3.3	14
69	Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior. Journal of Experimental Medicine, 2017, 214, 1431-1452.	8.5	44
70	Unconventional role of voltageâ€gated proton channels (<scp>VSOP</scp> /Hv1) in regulation of microglial <scp>ROS</scp> production. Journal of Neurochemistry, 2017, 142, 686-699.	3.9	25
71	RGMs: Structural Insights, Molecular Regulation, and Downstream Signaling. Trends in Cell Biology, 2017, 27, 365-378.	7.9	83
72	Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation. Biochemical and Biophysical Research Communications, 2017, 482, 1160-1164.	2.1	7

#	Article	IF	CITATIONS
73	Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis. Scientific Reports, 2017, 7, 12007.	3.3	17
74	The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Scientific Reports, 2017, 7, 1155.	3.3	11
75	The roles of RGMa-neogenin signaling in inflammation and angiogenesis. Inflammation and Regeneration, 2017, 37, 6.	3.7	22
76	Peripherally derived FGF21 promotes remyelination in the central nervous system. Journal of Clinical Investigation, 2017, 127, 3496-3509.	8.2	77
77	NME2 associates with PTPÏ $_f$ to transduce signals from chondroitin sulfate proteoglycans. Biochemical and Biophysical Research Communications, 2016, 471, 522-527.	2.1	3
78	Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. Journal of Experimental Medicine, 2016, 213, 2949-2966.	8.5	12
79	The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Scientific Reports, 2016, 6, 25893.	3.3	37
80	Repulsive guidance molecule A suppresses angiogenesis. Biochemical and Biophysical Research Communications, 2016, 469, 993-999.	2.1	13
81	Microglia in central nervous system repair after injury. Journal of Biochemistry, 2016, 159, 491-496.	1.7	136
82	Reorganization of corticospinal tract fibers after spinal cord injury in adult macaques. Scientific Reports, 2015, 5, 11986.	3.3	28
83	The First Nationwide Survey and Genetic Analyses of Bardet-Biedl Syndrome in Japan. PLoS ONE, 2015, 10, e0136317.	2.5	16
84	Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival. PLoS ONE, 2015, 10, e0139616.	2.5	20
85	Lrig2 Negatively Regulates Ectodomain Shedding of Axon Guidance Receptors by ADAM Proteases. Developmental Cell, 2015, 35, 537-552.	7.0	46
86	Prostacyclin Prevents Pericyte Loss and Demyelination Induced by Lysophosphatidylcholine in the Central Nervous System. Journal of Biological Chemistry, 2015, 290, 11515-11525.	3.4	50
87	Thromboxane A2 stimulates neurite outgrowth in cerebral cortical neurons via mitogen activated protein kinase signaling. Brain Research, 2015, 1594, 46-51.	2.2	15
88	The Brain–Immune Network in Spinal Cord Injury. , 2015, , 41-66.		1
89	A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. ELife, 2015, 4, .	6.0	57
90	Down-Regulation of KCC2 Expression and Phosphorylation in Motoneurons, and Increases the Number of in Primary Afferent Projections to Motoneurons in Mice with Post-Stroke Spasticity. PLoS ONE, 2014, 9, e114328.	2.5	35

Toshihide Yamashita

#	Article	IF	CITATIONS
91	A selector orchestrates cortical function. Nature Neuroscience, 2014, 17, 1016-1017.	14.8	0
92	Repulsive Guidance Molecule-a Is Involved in Th17-Cell-Induced Neurodegeneration in Autoimmune Encephalomyelitis. Cell Reports, 2014, 9, 1459-1470.	6.4	43
93	Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion. Proceedings of the United States of America, 2014, 111, 15226-15231.	7.1	37
94	Concept and molecular basis of axonal regeneration after central nervous system injury. Neuroscience Research, 2014, 78, 45-49.	1.9	9
95	Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Current Opinion in Neurobiology, 2014, 27, 8-15.	4.2	43
96	Role of DAPK in neuronal cell death. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 339-345.	4.9	33
97	Pericyte function in the physiological central nervous system. Neuroscience Research, 2014, 81-82, 38-41.	1.9	14
98	Involvement of Wnt/β-catenin signaling in the development of neuropathic pain. Neuroscience Research, 2014, 79, 34-40.	1.9	53
99	Vascular endothelial cells promote cortical neurite outgrowth via an integrin β3-dependent mechanism. Biochemical and Biophysical Research Communications, 2014, 450, 593-597.	2.1	4
100	Ecto-domain phosphorylation promotes functional recovery from spinal cord injury. Scientific Reports, 2014, 4, 4972.	3.3	7
101	Axon growth inhibition by RhoA/ROCK in the central nervous system. Frontiers in Neuroscience, 2014, 8, 338.	2.8	201
102	The newly identified migration inhibitory protein regulates the radial migration in the developing neocortex. Scientific Reports, 2014, 4, 5984.	3.3	8
103	Microglia. , 2014, , 175-187.		0
104	Improvement in protocol to generate homogeneous glutamatergic neurons from mouse embryonic stem cells reduced apoptosis. Biochemical and Biophysical Research Communications, 2013, 430, 604-609.	2.1	2
105	Layer V cortical neurons require microglial support for survival during postnatal development. Nature Neuroscience, 2013, 16, 543-551.	14.8	608
106	Repulsive guidance molecule a regulates hippocampal mossy fiber branching in vitro. NeuroReport, 2013, 24, 609-615.	1.2	16
107	Soluble Î ² -amyloid Precursor Protein Alpha Binds to p75 Neurotrophin Receptor to Promote Neurite Outgrowth. PLoS ONE, 2013, 8, e82321.	2.5	42
108	Sigma-1 Receptor Enhances Neurite Elongation of Cerebellar Granule Neurons via TrkB Signaling. PLoS ONE, 2013, 8, e75760.	2.5	43

#	Article	IF	CITATIONS
109	Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Brain, 2012, 135, 1253-1267.	7.6	101
110	Chondroitin Sulfate Proteoglycans Down-regulate Spine Formation in Cortical Neurons by Targeting Tropomyosin-related Kinase B (TrkB) Protein. Journal of Biological Chemistry, 2012, 287, 13822-13828.	3.4	37
111	Glucocorticoid Suppresses Dendritic Spine Development Mediated by Down-Regulation of Caldesmon Expression. Journal of Neuroscience, 2012, 32, 14583-14591.	3.6	30
112	Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nature Medicine, 2012, 18, 1658-1664.	30.7	99
113	Characterizing the neurite outgrowth inhibitory effect of Mani. FEBS Letters, 2012, 586, 3018-3023.	2.8	5
114	Repulsive Guidance Molecule-a and Demyelination: Implications for Multiple Sclerosis. Journal of NeuroImmune Pharmacology, 2012, 7, 524-528.	4.1	16
115	Identification of the Neogenin-Binding Site on the Repulsive Guidance Molecule A. PLoS ONE, 2012, 7, e32791.	2.5	13
116	Temporal Changes in Cell Marker Expression and Cellular Infiltration in a Controlled Cortical Impact Model in Adult Male C57BL/6 Mice. PLoS ONE, 2012, 7, e41892.	2.5	175
117	RhoA Activation and Effect of Rho-kinase Inhibitor in the Development of Retinal Neovascularization in a Mouse Model of Oxygen-induced Retinopathy. Current Eye Research, 2011, 36, 1028-1036.	1.5	10
118	Axotomy induces axonogenesis in hippocampal neurons by a mechanism dependent on importin \hat{l}^2 . Biochemical and Biophysical Research Communications, 2011, 405, 697-702.	2.1	10
119	Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury. Neuroscience Research, 2011, 69, 187-195.	1.9	25
120	TACE cleaves neogenin to desensitize cortical neurons to the repulsive guidance molecule. Neuroscience Research, 2011, 71, 63-70.	1.9	30
121	C-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice. Neuroscience Research, 2011, 71, 266-277.	1.9	28
122	Kinematic analyses reveal impaired locomotion following injury of the motor cortex in mice. Experimental Neurology, 2011, 230, 280-290.	4.1	27
123	Activated Microglia Inhibit Axonal Growth through RGMa. PLoS ONE, 2011, 6, e25234.	2.5	96
124	RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nature Medicine, 2011, 17, 488-494.	30.7	100
125	Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of Trk activity. EMBO Journal, 2011, 30, 1389-1401.	7.8	66
126	miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nature Neuroscience, 2011, 14, 1125-1134.	14.8	252

#	Article	IF	CITATIONS
127	Neogenin, a Receptor for Bone Morphogenetic Proteins. Journal of Biological Chemistry, 2011, 286, 5157-5165.	3.4	73
128	Abnormal Cystatin C Levels in Two Patients with Bardet-Biedl Syndrome. Clinical Medicine Insights: Case Reports, 2011, 4, CCRep.S6622.	0.7	3
129	Keratan Sulfate Restricts Neural Plasticity after Spinal Cord Injury. Journal of Neuroscience, 2011, 31, 17091-17102.	3.6	85
130	Paired Immunoglobulin-like Receptor B Knockout Does Not Enhance Axonal Regeneration or Locomotor Recovery after Spinal Cord Injury. Journal of Biological Chemistry, 2011, 286, 1876-1883.	3.4	61
131	FLRT2 and FLRT3 act as repulsive guidance cues for Unc5-positive neurons. EMBO Journal, 2011, 30, 2920-2933.	7.8	135
132	Limited functional recovery in rats with complete spinal cord injury after transplantation of whole-layer olfactory mucosa. Journal of Neurosurgery: Spine, 2010, 12, 122-130.	1.7	37
133	<i>N</i> -Acetylglucosamine 6- <i>O</i> -Sulfotransferase-1-Deficient Mice Show Better Functional Recovery after Spinal Cord Injury. Journal of Neuroscience, 2010, 30, 5937-5947.	3.6	70
134	Genetic Deletion of Paired Immunoglobulin-Like Receptor B Does Not Promote Axonal Plasticity or Functional Recovery after Traumatic Brain Injury. Journal of Neuroscience, 2010, 30, 13045-13052.	3.6	56
135	Expression of galectin-1 in immune cells and glial cells after spinal cord injury. Neuroscience Research, 2010, 66, 265-270.	1.9	26
136	Th1 cells promote neurite outgrowth from cortical neurons via a mechanism dependent on semaphorins. Biochemical and Biophysical Research Communications, 2010, 402, 168-172.	2.1	15
137	Olfactory Mucosal Transplantation After Spinal Cord Injury Improves Voiding Efficiency by Suppressing Detrusor-Sphincter Dyssynergia in Rats. Journal of Urology, 2010, 184, 775-782.	0.4	5
138	Reduction of Brain β-Amyloid (Aβ) by Fluvastatin, a Hydroxymethylglutaryl-CoA Reductase Inhibitor, through Increase in Degradation of Amyloid Precursor Protein C-terminal Fragments (APP-CTFs) and Aβ Clearance. Journal of Biological Chemistry, 2010, 285, 22091-22102.	3.4	95
139	Inactivation of Ras by p120GAP via Focal Adhesion Kinase Dephosphorylation Mediates RGMa-Induced Growth Cone Collapse. Journal of Neuroscience, 2009, 29, 6649-6662.	3.6	41
140	Wnt-Ryk Signaling Mediates Axon Growth Inhibition and Limits Functional Recovery after Spinal Cord Injury. Journal of Neurotrauma, 2009, 26, 955-964.	3.4	74
141	Unc5B associates with LARG to mediate the action of repulsive guidance molecule. Journal of Cell Biology, 2009, 184, 737-750.	5.2	81
142	TNF-α contributes to axonal sprouting and functional recovery following traumatic brain injury. Brain Research, 2009, 1290, 102-110.	2.2	53
143	Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Brain Research, 2009, 1295, 192-202.	2.2	34
144	Chronic inflammatory demyelinating polyneuropathy sera inhibit axonal growth of mouse dorsal root ganglion neurons by activation of rhoâ€kinase. Annals of Neurology, 2009, 66, 694-697.	5.3	8

#	Article	IF	CITATIONS
145	Zyxin is a novel interacting partner for SIRT1. BMC Cell Biology, 2009, 10, 6.	3.0	29
146	Repulsive guidance molecule b inhibits neurite growth and is increased after spinal cord injury. Biochemical and Biophysical Research Communications, 2009, 382, 795-800.	2.1	26
147	Endothelin promotes neurite elongation by a mechanism dependent on c-Jun N-terminal kinase. Biochemical and Biophysical Research Communications, 2009, 383, 509-512.	2.1	7
148	Inhibition of TGF-β1 promotes functional recovery after spinal cord injury. Neuroscience Research, 2009, 65, 393-401.	1.9	56
149	Engulfment of Axon Debris by Microglia Requires p38 MAPK Activity. Journal of Biological Chemistry, 2009, 284, 21626-21636.	3.4	76
150	Nerve Growth Factor of Cultured Medium Extracted From Human Degenerative Nucleus Pulposus Promotes Sensory Nerve Growth and Induces Substance P In Vitro. Spine, 2009, 34, 2263-2269.	2.0	48
151	Transfection of Rat Cells With Proopiomeranocortin Gene, Precursor of Endogenous Endorphin, Using Radial Shock Waves Suppresses Inflammatory Pain. Spine, 2009, 34, 2270-2277.	2.0	9
152	Endothelins derived from vascular endothelial cells promote cortical neurite elongation. FASEB Journal, 2009, 23, 524.5.	0.5	0
153	A new signaling pathway that is involved in the BMP signaling. FASEB Journal, 2009, 23, 530.3.	0.5	Ο
154	TACEâ€induced cleavage of Neogenin disinhibits CNS axon/neurite growth by RGM in rat primary cortical neuron. FASEB Journal, 2009, 23, 523.3.	0.5	0
155	Intrinsic regenerative mechanisms of central nervous system neurons. BioScience Trends, 2009, 3, 179-83.	3.4	24
156	Differential Regulation of Adenine Nucleotide Translocators by Hypertonicity in the Brain. Journal of Neurochemistry, 2008, 72, 1259-1265.	3.9	3
157	Neuroprotective Role of Na+/myo-Inositol Cotransporter Against Veratridine Cytotoxicity. Journal of Neurochemistry, 2008, 72, 1864-1870.	3.9	7
158	The p75 receptor is associated with inflammatory thermal hypersensitivity. Journal of Neuroscience Research, 2008, 86, 3566-3574.	2.9	35
159	Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. Journal of Neurochemistry, 2008, 105, 113-126.	3.9	61
160	BMP inhibition enhances axonal growth and functional recovery after spinal cord injury. Journal of Neurochemistry, 2008, 105, 1471-1479.	3.9	86
161	LIMâ€only protein 4 interacts directly with the repulsive guidance molecule A receptor Neogenin. Journal of Neurochemistry, 2008, 107, 418-431.	3.9	26
162	Temperature dependence of the flexural rigidity of single microtubules. Biochemical and Biophysical Research Communications, 2008, 366, 637-642.	2.1	31

#	Article	IF	CITATIONS
163	Peptides derived from repulsive guidance molecule act as antagonists. Biochemical and Biophysical Research Communications, 2008, 371, 501-504.	2.1	2
164	Inhibition of branching and spine maturation by repulsive guidance molecule in cultured cortical neurons. Biochemical and Biophysical Research Communications, 2008, 372, 725-729.	2.1	30
165	Regulation of Axonal Elongation and Pathfinding from the Entorhinal Cortex to the Dentate Gyrus in the Hippocampus by the Chemokine Stromal Cell-Derived Factor 1α. Journal of Neuroscience, 2008, 28, 8344-8353.	3.6	26
166	Role of RhoA in Activity-Dependent Cortical Axon Branching. Journal of Neuroscience, 2008, 28, 9117-9121.	3.6	34
167	Inhibition of a eukaryotic initiation factor (<i>elF2Bδ</i> ,/F11A3.2) during adulthood extends lifespan in <i>Caenorhabditis elegans</i> . FASEB Journal, 2008, 22, 4327-4337.	0.5	33
168	The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Therapeutics and Clinical Risk Management, 2008, Volume 4, 605-615.	2.0	103
169	Strategies for regenerating injured axons after spinal cord injury – insights from brain development. Biologics: Targets and Therapy, 2008, 2, 253.	3.2	13
170	Rho-ROCK Inhibitors as Emerging Strategies to Promote Nerve Regeneration. Current Pharmaceutical Design, 2007, 13, 2493-2499.	1.9	98
171	Inhibition of Rho/Rho-Kinase as Therapeutic Strategy to Promote CNS Axonal Regeneration. Central Nervous System Agents in Medicinal Chemistry, 2007, 7, 241-250.	1.1	2
172	Rho-ROCK Inhibitors for the Treatment of CNS Injury. Recent Patents on CNS Drug Discovery, 2007, 2, 173-179.	0.9	44
173	Rho Kinase Inhibitor Improves Motor Dysfunction and Hypoalgesia in a Rat Model of Lumbar Spinal Canal Stenosis. Spine, 2007, 32, 2070-2075.	2.0	20
174	BMP inhibits neurite growth by a mechanism dependent on LIM-kinase. Biochemical and Biophysical Research Communications, 2007, 360, 868-873.	2.1	18
175	Repulsion of cerebellar granule neurons by chondroitin sulfate proteoglycans is mediated by MAPK pathway. Neuroscience Letters, 2007, 423, 62-67.	2.1	16
176	Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury. Brain Research, 2007, 1186, 74-86.	2.2	40
177	Neogenin and repulsive guidance molecule signaling in the central nervous system. Current Opinion in Neurobiology, 2007, 17, 29-34.	4.2	62
178	Delayed treatment with Rho-kinase inhibitor does not enhance axonal regeneration or functional recovery after spinal cord injury in rats. Experimental Neurology, 2006, 200, 392-397.	4.1	41
179	Induction of repulsive guidance molecule in neurons following sciatic nerve injury. Journal of Chemical Neuroanatomy, 2006, 32, 74-77.	2.1	12
180	Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. Journal of the Peripheral Nervous System, 2006, 11, 217-224.	3.1	65

#	Article	IF	CITATIONS
181	Adenoviral gene transfer in the peripheral nervous system. Journal of Orthopaedic Science, 2006, 11, 64-69.	1.1	18
182	Progressive hearing loss in mice carrying a mutation in the p75 gene. Brain Research, 2006, 1091, 224-234.	2.2	28
183	Role of Clast1 in development of cerebellar granule cells. Brain Research, 2006, 1104, 18-26.	2.2	14
184	Myelin-associated Glycoprotein Inhibits Microtubule Assembly by a Rho-kinase-dependent Mechanism. Journal of Biological Chemistry, 2006, 281, 15970-15979.	3.4	131
185	The role of repulsive guidance molecules in the embryonic and adult vertebrate central nervous system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1513-1529.	4.0	43
186	RGMa inhibition promotes axonal growth and recovery after spinal cord injury. Journal of Cell Biology, 2006, 173, 47-58.	5.2	257
187	Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation in the Dorsal Root Ganglion (DRG) and Spinal Cord After DRG Injury in Rats. Spine, 2005, 30, 2252-2256.	2.0	24
188	Multiple Signals Regulate Axon Regeneration Through the Nogo Receptor Complex. Molecular Neurobiology, 2005, 32, 105-112.	4.0	77
189	Binding of soluble myelin-associated glycoprotein to specific gangliosides induces the association of p75NTR to lipid rafts and signal transduction. Journal of Neurochemistry, 2005, 94, 15-21.	3.9	43
190	Diverse functions of the p75 neurotrophin receptor. Kaibogaku Zasshi Journal of Anatomy, 2005, 80, 37-41.	1.2	22
191	Wallerian Degeneration Involves Rho/Rho-kinase Signaling*. Journal of Biological Chemistry, 2005, 280, 20384-20388.	3.4	37
192	Biological activity of neurotrophins is dependent on recruitment of Rac1 to lipid rafts. Biochemical and Biophysical Research Communications, 2005, 327, 150-154.	2.1	16
193	c-Jun N-terminal kinase activation in dorsal root ganglion contributes to pain hypersensitivity. Biochemical and Biophysical Research Communications, 2005, 335, 132-138.	2.1	45
194	Axonal Regeneration of the Injured Central Nervous System by Rho/Rho-kinase Inhibition. Surgery for Cerebral Stroke, 2005, 33, 395-397.	0.0	0
195	EphA Receptors Direct the Differentiation of Mammalian Neural Precursor Cells through a Mitogen-activated Protein Kinase-dependent Pathway. Journal of Biological Chemistry, 2004, 279, 32643-32650.	3.4	74
196	Promotion of Axon Regeneration by Myelin-Associated Glycoprotein and Nogo through Divergent Signals Downstream of Gi/G. Journal of Neuroscience, 2004, 24, 6826-6832.	3.6	78
197	Chimaerins act downstream from neurotrophins in overcoming the inhibition of neurite outgrowth produced by myelin-associated glycoprotein. Journal of Neurochemistry, 2004, 91, 395-403.	3.9	12
198	P311 accelerates nerve regeneration of the axotomized facial nerve. Journal of Neurochemistry, 2004, 91, 737-744.	3.9	68

#	Article	IF	CITATIONS
199	Activation of Rho in the injured axons following spinal cord injury. EMBO Reports, 2004, 5, 412-417.	4.5	93
200	p75 Neurotrophin receptor signaling in the nervous system. Biotechnology Annual Review, 2004, 10, 123-149.	2.1	17
201	FLRT3, a cell surface molecule containing LRR repeats and a FNIII domain, promotes neurite outgrowth. Biochemical and Biophysical Research Communications, 2004, 313, 1086-1091.	2.1	52
202	Changes in mRNA of Slit–Robo GTPase-activating protein 2 following facial nerve transection. Molecular Brain Research, 2004, 123, 76-80.	2.3	23
203	PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts. EMBO Journal, 2003, 22, 1790-1800.	7.8	105
204	Developmental regulation of FERM domain including guanine nucleotide exchange factor gene expression in the mouse brain. Developmental Brain Research, 2003, 144, 181-189.	1.7	3
205	The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neuroscience, 2003, 6, 461-467.	14.8	424
206	Functional inhibition of the p75 receptor using a small interfering RNA. Biochemical and Biophysical Research Communications, 2003, 301, 804-809.	2.1	40
207	The p75 receptor is required for BDNF-induced differentiation of neural precursor cells. Biochemical and Biophysical Research Communications, 2003, 301, 1011-1015.	2.1	35
208	Induction of mRNAs and proteins for Na/K ATPase α1 and β1 subunits following hypoxia/reoxygenation in astrocytes. Molecular Brain Research, 2003, 110, 38-44.	2.3	10
209	Expression of FERM domain including guanine nucleotide exchange factor mRNA in adult rat brain. Molecular Brain Research, 2003, 114, 163-167.	2.3	5
210	Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity. Journal of Cell Biology, 2002, 158, 321-329.	5.2	147
211	Peg3/Pw1 Is Involved in p53-mediated Cell Death Pathway in Brain Ischemia/Hypoxia. Journal of Biological Chemistry, 2002, 277, 623-629.	3.4	57
212	The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. Journal of Cell Biology, 2002, 157, 565-570.	5.2	361
213	Tumor Necrosis Factor Inhibits Neurite Outgrowth and Branching of Hippocampal Neurons by a Rho-Dependent Mechanism. Journal of Neuroscience, 2002, 22, 854-862.	3.6	282
214	Identification and characterization of a novel mitochondrial tricarboxylate carrier. Biochemical and Biophysical Research Communications, 2002, 295, 463-468.	2.1	23
215	Changes in mRNA for VAMPs following facial nerve transection. Journal of Chemical Neuroanatomy, 2002, 24, 147-152.	2.1	7
216	Expression of mitochondrial tricarboxylate carrier TCC mRNA and protein in the rat brain. Molecular Brain Research, 2002, 100, 67-73.	2.3	7

#	Article	IF	CITATIONS
217	Changes in mRNA for choline transporter-like protein following facial nerve transection. Molecular Brain Research, 2002, 101, 122-125.	2.3	14
218	A Novel FERM Domain Including Guanine Nucleotide Exchange Factor Is Involved in Rac Signaling and Regulates Neurite Remodeling. Journal of Neuroscience, 2002, 22, 8504-8513.	3.6	69
219	Analysis of genes induced in peripheral nerve after axotomy using cDNA microarrays. Journal of Neurochemistry, 2002, 82, 1129-1136.	3.9	84
220	Cloning of a lymphatic peptide/histidine transporter. Biochemical Journal, 2001, 356, 53.	3.7	78
221	Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Molecular Brain Research, 2000, 78, 131-137.	2.3	232
222	Changes in mRNA of protein inhibitor of neuronal nitric oxide synthase following facial nerve transection. Journal of Chemical Neuroanatomy, 2000, 17, 199-206.	2.1	12
223	Neurotrophin Binding to the p75 Receptor Modulates Rho Activity and Axonal Outgrowth. Neuron, 1999, 24, 585-593.	8.1	479
224	Kainic acid-induced seizure upregulates Na+/myo-inositol cotransporter mRNA in rat brain. Molecular Brain Research, 1999, 70, 179-186.	2.3	30
225	Cloning of a bovine orphan transporter and its short splicing variant. FEBS Letters, 1999, 443, 267-270.	2.8	10
226	Increased transcription of glutamate–aspartate transporter (GLAST/GluT-1) mRNA following kainic acid-induced limbic seizure. Molecular Brain Research, 1998, 55, 54-60.	2.3	41
227	Regulation of Na+/myo-inositol cotransporter gene expression in hyperglycemic rat hippocampus. Molecular Brain Research, 1998, 57, 167-172.	2.3	8
228	Coordinate Expression of Î \pm -Tropomyosin and Caldesmon Isoforms in Association with Phenotypic Modulation of Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 15396-15404.	3.4	60
229	Cloning and Functional Expression of a Brain Peptide/Histidine Transporter. Journal of Biological Chemistry, 1997, 272, 10205-10211.	3.4	193
230	Expression of tPA mRNA in the facial nucleus following facial nerve transection in the rat. NeuroReport, 1997, 8, 419-422.	1.2	5
231	Induction of Na+/myo-inositol co-transporter mRNA after rat cryogenic injury. Molecular Brain Research, 1997, 46, 236-242.	2.3	18
232	Developmental regulation of Na+/myo-inositol cotransporter gene expression. Molecular Brain Research, 1997, 51, 91-96.	2.3	30
233	Expression of Growth Inhibitory Factor mRNA After Focal Ischemia in Rat Brain. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 745-752.	4.3	22
234	Changes in glutamate/aspartate transporter (GLAST/CluT-1) mRNA expression following facial nerve transection. Molecular Brain Research, 1996, 38, 294-299.	2.3	14

#	Article	IF	CITATIONS
235	Induction of Na+/Myo-Inositol Cotransporter mRNA after Focal Cerebral Ischemia: Evidence for Extensive Osmotic Stress in Remote Areas. Journal of Cerebral Blood Flow and Metabolism, 1996, 16, 1203-1210.	4.3	22
236	Changes in growth inhibitory factor mRNA expression compared with those in c-jun mRNA expression following facial nerve transection. Molecular Brain Research, 1995, 28, 181-185.	2.3	49
237	Expression of Growth Inhibitory Factor mRNA following Cortical Injury in Rat. Journal of Neurotrauma, 1995, 12, 299-306.	3.4	35
238	Messenger RNA and protein expression of basic fibroblast growth factor receptor after cortical ablation. Molecular Brain Research, 1994, 25, 50-56.	2.3	21
239	Humanized Anti-RGMa Antibody Treatment Promotes Repair of Blood-Spinal Cord Barrier Under Autoimmune Encephalomyelitis in Mice. Frontiers in Immunology, 0, 13, .	4.8	1