
## Takahiro Maruyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364236/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 2010, 48, 191-200.                                                                              | 5.4 | 122       |
| 2  | Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal<br>Technique. Journal of Physical Chemistry C, 2016, 120, 3019-3025.                                                                     | 1.5 | 105       |
| 3  | Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources. Carbon, 2009, 47, 1565-1575.                                                          | 5.4 | 102       |
| 4  | Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon, 2016, 96, 6-13.                                                                 | 5.4 | 60        |
| 5  | Enhanced adsorption and catalytic degradation of organic dyes by nanometer iron oxide anchored to single-wall carbon nanotubes. Applied Surface Science, 2019, 488, 813-826.                                                          | 3.1 | 58        |
| 6  | Controllable growth of highly N-doped carbon nanotubes from imidazole: a structural, spectroscopic and field emission study. Journal of Materials Chemistry, 2010, 20, 4128.                                                          | 6.7 | 54        |
| 7  | Low temperature growth of carbon nanotubes on Si substrates in high vacuum. Diamond and Related<br>Materials, 2008, 17, 589-593.                                                                                                      | 1.8 | 39        |
| 8  | STM and XPS studies of early stages of carbon nanotube growth by surface decomposition of<br>6H–SiC(000-1) under various oxygen pressures. Diamond and Related Materials, 2007, 16, 1078-1081.                                        | 1.8 | 38        |
| 9  | Nitrogen-Mediated Wet-Chemical Formation of Carbon Nitride/ZnO Heterojunctions for Enhanced<br>Field Emission. Langmuir, 2010, 26, 5527-5533.                                                                                         | 1.6 | 36        |
| 10 | Vertically aligned growth of small-diameter single-walled carbon nanotubes by alcohol catalytic chemical vapor deposition with Ir catalyst. Applied Surface Science, 2020, 509, 145340.                                               | 3.1 | 29        |
| 11 | Synthesis of double-walled carbon nanotube films and their field emission properties. Carbon, 2010, 48, 2882-2889.                                                                                                                    | 5.4 | 26        |
| 12 | Facile Decoration of Platinum Nanoparticles on Carbon-Nitride Nanotubes via Microwave-Assisted<br>Chemical Reduction and Their Optimization for Field-Emission Application. Journal of Physical<br>Chemistry C, 2010, 114, 5107-5112. | 1.5 | 26        |
| 13 | Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes. ACS Nano, 2017, 11, 3081-3088.                                                                                        | 7.3 | 25        |
| 14 | Current status of single-walled carbon nanotube synthesis from metal catalysts by chemical vapor<br>deposition. Materials Express, 2018, 8, 1-20.                                                                                     | 0.2 | 25        |
| 15 | Scanning-tunneling-microscopy of the formation of carbon nanocaps on SiC(000â^'1). Chemical Physics<br>Letters, 2006, 423, 317-320.                                                                                                   | 1.2 | 24        |
| 16 | Single-Walled Carbon Nanotube Growth in High Vacuum Using Pt Catalyst in Alcohol Gas Source<br>Method. Materials Express, 2011, 1, 267-272.                                                                                           | 0.2 | 24        |
| 17 | Single-walled carbon nanotube synthesis on SiO2/Si substrates at very low pressures by the alcohol gas source method using a Pt catalyst. Diamond and Related Materials, 2012, 26, 78-82.                                             | 1.8 | 20        |
| 18 | Low temperature growth of single-walled carbon nanotubes from Rh catalysts. Carbon, 2017, 116, 128-132                                                                                                                                | 5.4 | 19        |

2

Takahiro Maruyama

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Direct growth of multilayer graphene by precipitation using W capping layer. Japanese Journal of Applied Physics, 2016, 55, 100302.                                                                        | 0.8 | 18        |
| 20 | Low-Temperature Synthesis of Single-Walled Carbon Nanotubes by Alcohol Gas Source Growth in<br>High Vacuum. Journal of Nanoscience and Nanotechnology, 2010, 10, 4095-4101.                                | 0.9 | 17        |
| 21 | Temperature dependence of selective growth of GaN by ammonia-based metal-organic molecular beam<br>epitaxy. Journal of Crystal Growth, 2011, 318, 450-453.                                                 | 0.7 | 17        |
| 22 | Observation of Nanosized Cap Structures on 6H–SiC(000ar1) Substrates by Ultrahigh-Vacuum<br>Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2006, 45, 372-374.                         | 0.8 | 16        |
| 23 | Low temperature growth of single-walled carbon nanotubes from Ru catalysts by alcohol catalytic chemical vapor deposition. Diamond and Related Materials, 2017, 77, 97-101.                                | 1.8 | 15        |
| 24 | In situ annealing of GaN dot structures grown by droplet epitaxy on (111) Si substrates. Journal of<br>Crystal Growth, 2007, 300, 118-122.                                                                 | 0.7 | 13        |
| 25 | Single-walled carbon nanotube growth on SiO2/Si using Rh catalysts by alcohol gas source chemical vapor deposition. Diamond and Related Materials, 2016, 63, 159-164.                                      | 1.8 | 12        |
| 26 | Polyaniline/carbon nanotube/CdS quantum dot composites with enhanced optical and electrical properties. Applied Surface Science, 2016, 364, 176-180.                                                       | 3.1 | 12        |
| 27 | Effect of mask material on selective growth of GaN by RF-MBE. Journal of Crystal Growth, 2011, 324, 88-92.                                                                                                 | 0.7 | 10        |
| 28 | Characterization of Small-Diameter Carbon Nanotubes and Carbon Nanocaps on SiC(000ar1) Using<br>Raman Spectroscopy. Japanese Journal of Applied Physics, 2006, 45, 7231-7233.                              | 0.8 | 9         |
| 29 | Optimization of initial growth in low-angle incidence microchannel epitaxy of GaAs on (001) GaAs substrates. Journal of Crystal Growth, 2008, 310, 1571-1575.                                              | 0.7 | 9         |
| 30 | Initial stage of carbon nanotube formation process by surface decomposition of SiC: STM and NEXAFS study. Diamond and Related Materials, 2011, 20, 1325-1328.                                              | 1.8 | 9         |
| 31 | Low angle incidence microchannel epitaxy of GaN grown by ammonia-based metal–organic molecular<br>beam epitaxy. Journal of Crystal Growth, 2011, 318, 446-449.                                             | 0.7 | 9         |
| 32 | Selective growth of (001) GaAs using a patterned graphene mask. Journal of Crystal Growth, 2014, 401, 563-566.                                                                                             | 0.7 | 8         |
| 33 | Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Materials Today Communications, 2019, 19, 51-55.          | 0.9 | 8         |
| 34 | Effect of crystallographic orientation of microchannel on low-angle incidence microchannel epitaxy on (001) GaAs substrate. Journal of Crystal Growth, 2009, 311, 1778-1782.                               | 0.7 | 7         |
| 35 | Effect of Annealing in Hydrogen Atmosphere on Carbon Nanocap Formation in Surface Decomposition of 6H-SiC(000-1). Journal of Nanoscience and Nanotechnology, 2010, 10, 4054-4059.                          | 0.9 | 7         |
| 36 | Effect of Buffer Thickness on Single-Walled Carbon Nanotube Growth Using Aluminum Oxide Buffer<br>Layer with Alcohol Gas Source Method. Journal of Nanoscience and Nanotechnology, 2010, 10,<br>3929-3933. | 0.9 | 7         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Liquid-phase epitaxy of GaAs by temperature difference method to realize wide lateral growth. Journal of Crystal Growth, 2008, 310, 1642-1646.                                                        | 0.7 | 6         |
| 38 | Direct Growth of Single-Walled Carbon Nanotube Films and Their Optoelectric Properties. Journal of<br>Physical Chemistry C, 2009, 113, 12079-12084.                                                   | 1.5 | 5         |
| 39 | SWNT growth on Al2Ox/Co/Al2Ox multilayer catalyst using alcohol gas source method in high vacuum. Journal of Crystal Growth, 2011, 318, 1101-1104.                                                    | 0.7 | 4         |
| 40 | Iridium atalyzed Singleâ€Walled Carbon Nanotube Synthesis by Alcoholâ€Gasâ€Source Method Under Low<br>Ethanol Pressure: Growth Temperature Dependence. Crystal Research and Technology, 0, , 2100226. | 0.6 | 1         |