
Chloe Zubieta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9364025/publications.pdf Version: 2024-02-01

CHLOF ZURIETA

#	Article	IF	CITATIONS
1	Getting in phase- DNA damage repair mechanisms and liquid-liquid phase separation of the plant-specific histone methyltransferase MtSUVR2. Molecular Plant, 2022, , .	8.3	0
2	The LEAFY floral regulator displays pioneer transcription factor properties. Molecular Plant, 2021, 14, 829-837.	8.3	48
3	The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nature Communications, 2021, 12, 4760.	12.8	29
4	Unraveling the role of MADS transcription factor complexes in apple tree dormancy. New Phytologist, 2021, 232, 2071-2088.	7.3	31
5	Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Research, 2020, 48, 9637-9648.	14.5	39
6	A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585, 256-260.	27.8	337
7	Contrasted evolutionary trajectories of plant transcription factors. Current Opinion in Plant Biology, 2020, 54, 101-107.	7.1	26
8	Molecular mechanisms of Evening Complex activity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6901-6909.	7.1	101
9	Structural Basis for Plant MADS Transcription Factor Oligomerization. Computational and Structural Biotechnology Journal, 2019, 17, 946-953.	4.1	37
10	Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. Molecular Plant, 2019, 12, 743-763.	8.3	71
11	CryoEM structure of adenovirus type 3 fibre with desmoglein 2 shows an unusual mode of receptor engagement. Nature Communications, 2019, 10, 1181.	12.8	24
12	Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid. Journal of Biological Chemistry, 2019, 294, 16855-16864.	3.4	18
13	MADS transcription factors cooperate: complexities of complex formation. Journal of Experimental Botany, 2018, 69, 1821-1823.	4.8	14
14	Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research, 2018, 46, 4966-4977.	14.5	81
15	A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily. Scientific Reports, 2018, 8, 14796.	3.3	8
16	CircRNAs in Plants. Advances in Experimental Medicine and Biology, 2018, 1087, 329-343.	1.6	37
17	Mapping of Adenovirus of serotype 3 fibre interaction to desmoglein 2 revealed a novel †non-classical' mechanism of viral receptor engagement. Scientific Reports, 2018, 8, 8381.	3.3	18
18	Pioneer Factors in Animals and Plants—Colonizing Chromatin for Gene Regulation. Molecules, 2018, 23, 1914.	3.8	18

CHLOE ZUBIETA

#	Article	IF	CITATIONS
19	A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nature Plants, 2017, 3, 17053.	9.3	434
20	Exploring the Multiligand Binding Specificity of Saposin B Reveals Two Binding Sites. ACS Omega, 2017, 2, 7141-7145.	3.5	4
21	The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants, 2017, 3, 17087.	9.3	205
22	Plant SAM-Domain Proteins Start to Reveal Their Roles. Trends in Plant Science, 2017, 22, 718-725.	8.8	21
23	Merging of synchrotron serial crystallographic data by a genetic algorithm. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1026-1035.	2.3	26
24	Radiation-damage-induced phasing: a case study using UV irradiation with light-emitting diodes. Acta Crystallographica Section D: Structural Biology, 2016, 72, 395-402.	2.3	6
25	The Myb domain of LUX ARRHYTHMO in complex with DNA: expression, purification and crystallization. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 356-361.	0.8	6
26	<i>Arabidopsis thaliana</i> GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13917-13922.	7.1	118
27	The Lysosomal Protein Saposinâ€B Binds Chloroquine. ChemMedChem, 2016, 11, 277-282.	3.2	25
28	Practical Radiation Damage-Induced Phasing. Methods in Molecular Biology, 2016, 1320, 205-218.	0.9	3
29	Preclinical safety and efficacy studies with an affinity-enhanced epithelial junction opener and PEGylated liposomal doxorubicin. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15005.	4.1	23
30	Intracellular Signaling and Desmoglein 2 Shedding Triggered by Human Adenoviruses Ad3, Ad14, and Ad14P1. Journal of Virology, 2015, 89, 10841-10859.	3.4	37
31	Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower. Frontiers in Plant Science, 2015, 6, 1193.	3.6	58
32	Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1. Journal of Biological Chemistry, 2014, 289, 31765-31776.	3.4	29
33	Structural Basis for the Oligomerization of the MADS Domain Transcription Factor SEPALLATA3 in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 3603-3615.	6.6	97
34	Structural and Functional Studies on the Interaction of Adenovirus Fiber Knobs and Desmoglein 2. Journal of Virology, 2013, 87, 11346-11362.	3.4	32
35	Imaging material properties of biological samples with a force feedback microscope. Journal of Molecular Recognition, 2013, 26, 689-693.	2.1	13
36	Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2072-2080.	2.5	37

CHLOE ZUBIETA

#	Article	IF	CITATIONS
37	Crystallization studies of the keratin-like domain from <i>Arabidopsis thaliana</i> SEPALLATA 3. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 997-1000.	0.7	5
38	A Structural Basis for the Biosynthesis of the Major Chlorogenic Acids Found in Coffee Â. Plant Physiology, 2012, 160, 249-260.	4.8	120
39	Structural Basis for Prereceptor Modulation of Plant Hormones by GH3 Proteins. Science, 2012, 336, 1708-1711.	12.6	137
40	Structural Analysis of Specific Metal Chelating Inhibitor Binding to the Endonuclease Domain of Influenza pH1N1 (2009) Polymerase. PLoS Pathogens, 2012, 8, e1002831.	4.7	149
41	Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization. PLoS ONE, 2012, 7, e32498.	2.5	36
42	The Structural Basis for the Integrity of Adenovirus Ad3 Dodecahedron. PLoS ONE, 2012, 7, e46075.	2.5	25
43	Conformational changes associated with the binding of zinc acetate at the putative active site ofXcTcmJ, a cupin fromXanthomonas campestrispv.campestris. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1347-1353.	0.7	5
44	Structural Basis for Evolution of Product Diversity in Soybean Glutathione Biosynthesis. Plant Cell, 2009, 21, 3450-3458.	6.6	22
45	Structural Basis of Murein Peptide Specificity of a Î ³ -D-Glutamyl-L-Diamino Acid Endopeptidase. Structure, 2009, 17, 303-313.	3.3	73
46	Crystal structures of MW1337R and lin2004: Representatives of a novel protein family that adopt a fourâ€helical bundle fold. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1589-1596.	2.6	3
47	Cooperative Assembly of TGF-β Superfamily Signaling Complexes Is Mediated by Two Disparate Mechanisms and Distinct Modes of Receptor Binding. Molecular Cell, 2008, 29, 157-168.	9.7	247
48	A Single Amino Acid Change Is Responsible for Evolution of Acyltransferase Specificity in Bacterial Methionine Biosynthesis. Journal of Biological Chemistry, 2008, 283, 7561-7567.	3.4	21
49	Arabidopsis Isochorismate Synthase Functional in Pathogen-induced Salicylate Biosynthesis Exhibits Properties Consistent with a Role in Diverse Stress Responses. Journal of Biological Chemistry, 2007, 282, 5919-5933.	3.4	198
50	Crystal structure of homoserine O-succinyltransferase from Bacillus cereus at 2.4 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2007, 68, 999-1005.	2.6	13
51	Crystal structures of two novel dyeâ€decolorizing peroxidases reveal a βâ€barrel fold with a conserved hemeâ€binding motif. Proteins: Structure, Function and Bioinformatics, 2007, 69, 223-233.	2.6	81
52	Identification and structural characterization of heme binding in a novel dyeâ€decolorizing peroxidase, TyrA. Proteins: Structure, Function and Bioinformatics, 2007, 69, 234-243.	2.6	67
53	Structural and biochemical characterization of a human adenovirus 2/12 penton base chimera. FEBS Journal, 2006, 273, 4336-4345.	4.7	16
54	A quasi-atomic model of human adenovirus type 5 capsid. EMBO Journal, 2005, 24, 1645-1654.	7.8	130

Chloe Zubieta

#	Article	IF	CITATION
55	Crystal Structures of Alfalfa Caffeoyl Coenzyme A 3-O-Methyltransferase. Plant Physiology, 2005, 137, 1009-1017.	4.8	111
56	The Structure of the Human Adenovirus 2 Penton. Molecular Cell, 2005, 17, 121-135.	9.7	188
57	The Structure of the Human Adenovirus 2 Penton. Molecular Cell, 2005, 17, 319-320.	9.7	5
58	O-Methylation of benzaldehyde derivatives by "lignin specific―caffeic acid 3-O-methyltransferase. Phytochemistry, 2004, 65, 837-846.	2.9	32
59	Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. Plant Cell, 2003, 15, 1704-1716.	6.6	214
60	Chapter two Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry, 2003, 37, 37-58.	0.5	68
61	Structural Basis for the Modulation of Lignin Monomer Methylation by Caffeic Acid/5-Hydroxyferulic Acid 3/5-O-Methyltransferase. Plant Cell, 2002, 14, 1265-1277.	6.6	222
62	Characterization of Phenylpropene O-Methyltransferases from Sweet Basil. Plant Cell, 2002, 14, 505-519.	6.6	224
63	Chapter Seven Properties and metabolic engineering of alfalfa phenylpropanoid pathway O-methyltransferases. Recent Advances in Phytochemistry, 2001, , 131-154.	0.5	3
64	Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nature Structural Biology, 2001, 8, 271-279.	9.7	298
65	Composite Solids Constructed From One-Dimensional Coordination Polymer Matrices and Molybdenum Oxide Subunits: Polyoxomolybdate Clusters within[{Cu(4,4′-bpy)}4Mo8O26] and[{Ni(H2O)2(4,4′-bpy)2}2Mo8O26] and One-Dimensional Oxide Chains in[{Cu(4,4′-bpy)}4Mo15O47]Â Angewandte Chemie International Edition in English, 1997, 36, 873-876.	∙8Ĥ2O.	438