Oliver Fabio Piattella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9363600/publications.pdf

Version: 2024-02-01

331642 330122 1,490 59 21 citations h-index papers

g-index 61 61 61 776 docs citations times ranked citing authors all docs

37

#	Article	IF	CITATIONS
1	RECONSTRUCTING f(R, T) GRAVITY FROM HOLOGRAPHIC DARK ENERGY. International Journal of Modern Physics D, 2012, 21, 1250024.	2.1	159
2	Rastall cosmology and the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î></mml:mi><mml:mi>CDM</mml:mi></mml:math> model. Physical Review D, 2012, 85, .	4.7	128
3	Gauge-invariant analysis of perturbations in Chaplygin gas unified models of dark matter and dark energy. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 016.	5.4	92
4	Finite-time singularities in $\langle i \rangle f \langle i \rangle (\langle i \rangle R \langle i \rangle, \langle i \rangle T \langle i \rangle)$ gravity and the effect of conformal anomaly. Canadian Journal of Physics, 2013, 91, 548-553.	1.1	80
5	Note on the evolution of the gravitational potential in Rastall scalar field theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 711, 232-237.	4.1	64
6	Bulk viscous cosmology with causal transport theory. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 029-029.	5.4	63
7	RASTALL COSMOLOGY. International Journal of Modern Physics Conference Series, 2012, 18, 67-76.	0.7	56
8	Observational constraints on Rastall's cosmology. European Physical Journal C, 2013, 73, 1.	3.9	55
9	Static, spherically symmetric solutions with a scalar field in Rastall gravity. General Relativity and Gravitation, $2016, 48, 1.$	2.0	48
10	The Brans–Dicke–Rastall theory. European Physical Journal C, 2014, 74, 1.	3.9	46
11	Unified Dark Matter models with fast transition. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	5.4	38
12	An Introduction to Particle Dark Matter. Universe, 2019, 5, 213.	2.5	36
13	Scalar models for the generalized Chaplygin gas and the structure formation constraints. Gravitation and Cosmology, 2011, 17, 259-271.	1.1	34
14	Reconstructing a <i>f</i> (<i>R</i>) theory from the \hat{l} ±-Attractors. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 041-041.	5.4	33
15	More about the Tolman-Oppenheimer-Volkoff equations for the generalized Chaplygin gas. Physical Review D, 2009, 80, .	4.7	32
16	Does Chaplygin gas have salvation?. European Physical Journal C, 2013, 73, 1.	3.9	32
17	The extreme limit of the generalised Chaplygin gas. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 012-012.	5.4	31
18	Bouncing solutions in Rastall's theory with a barotropic fluid. Gravitation and Cosmology, 2013, 19, 156-162.	1.1	31

#	Article	IF	CITATIONS
19	Unified Dark Matter scalar field models with fast transition. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 018-018.	5.4	29
20	Is the continuous matter creation cosmology an alternative to $\hat{\nu}$ CDM?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 038-038.	5.4	28
21	HIGH ENERGY PROCESSES IN THE VICINITY OF THE KERR'S BLACK HOLE HORIZON. International Journal of Modern Physics A, 2011, 26, 3856-3867.	1.5	23
22	Lensing in the McVittie metric. Physical Review D, 2016, 93, .	4.7	21
23	Dark matter effects in vacuum spacetime. Physical Review D, 2010, 82, .	4.7	19
24	Generic slow-roll and non-gaussianity parameters in $\langle i \rangle f \langle i \rangle R \langle i \rangle$ theories. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 028-028.	5.4	19
25	CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 039-039.	5.4	18
26	Duality between k-essence and Rastall gravity. European Physical Journal C, 2017, 77, 1. Pressure effects in the weak-field limit of complements	3.9	18
27	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo) 0.784314="" 1="" 10="" 412<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>: Td·(stretc</td><td>hy¹⁸"false">)</td></mml:mo)>	: Td·(stretc	hy ¹⁸ "false">)
28	Gravity. Physical Review D, 2019, 99. On collisions with unlimited energies in the vicinity of Kerr and Schwarzschild black hole horizons. Gravitation and Cosmology, 2012, 18, 70-75.	1.1	16
29	Note on the thermodynamics and the speed of sound of a scalar field. Classical and Quantum Gravity, 2014, 31, 055006.	4.0	16
30	Scalar-Tensor gravity with system-dependent potential and its relation with Renormalization Group extended General Relativity. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 009-009.	5.4	15
31	Dark matter velocity dispersion effects on CMB and matter power spectra. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	5.4	15
32	Redshift drift of gravitational lensing. Physical Review D, 2017, 95, .	4.7	14
33	Rastall's cosmology and its observational constraints. AIP Conference Proceedings, 2015, , .	0.4	12
34	On the Effect of the Cosmological Expansion on the Gravitational Lensing by a Point Mass. Universe, 2016, 2, 25.	2.5	12
35	A method for evaluating models that use galaxy rotation curves to derive the density profiles. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2706-2714.	4.4	12
	Neutron star masses in <mml:math <="" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td></td><td></td></mml:math>		

Neutron star masses in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1456" altimg="si3.svg"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>

#	Article	IF	CITATIONS
37	Quantum Cosmology of Fab Four John Theory with Conformable Fractional Derivative. Universe, 2020, 6, 50.	2.5	11
38	Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 002-002.	5.4	10
39	Cosmic bulk viscosity through backreaction. General Relativity and Gravitation, 2016, 48, 1.	2.0	10
40	The bending of light within gravity with large scale renormalization group effects. , 2015, , .		7
41	Averaged Lemaître–Tolman–Bondi dynamics. Classical and Quantum Gravity, 2017, 34, 035001.	4.0	7
42	Scalar models for the unification of the dark sector. , 2012, , .		6
43	A NOTE ON ACOUSTIC BLACK HOLES IN NEO-NEWTONIAN THEORY. Modern Physics Letters A, 2013, 28, 1350169.	1.2	6
44	Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 031-031.	5.4	6
45	Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 034-034.	5.4	5
46	Classical and quantum cosmology of Fab Four John theories. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 798, 135003.	4.1	5
47	Quantum properties of the Dirac field on BTZ black hole backgrounds. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 025202.	2.1	4
48	SAMPLE VARIANCE IN < i > N < /i> -BODY SIMULATIONS AND IMPACT ON TOMOGRAPHIC SHEAR PREDICTIONS. Astrophysical Journal, 2015, 812, 16.	4.5	4
49	Cosmology and Newtonian limit in a model of gravity with nonlocally interacting metrics. Physics of the Dark Universe, 2019, 26, 100357.	4.9	4
50	The step-harmonic potential. American Journal of Physics, 2010, 78, 842-850.	0.7	3
51	GRAVITATIONAL POTENTIAL EVOLUTION IN UNIFIED DARK MATTER SCALAR FIELD COSMOLOGIES: AN ANALYTICAL APPROACH. Modern Physics Letters A, 2011, 26, 2277-2286.	1.2	3
52	Newtonian hydrodynamic equations with relativistic pressure and velocity. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 046-046.	5.4	3
53	Variations on the Starobinsky Inflationary Model. Journal of Physics: Conference Series, 2017, 798, 012092.	0.4	3
54	Late-times asymptotic equation of state for a class of nonlocal theories of gravity. Physical Review D, 2019, 100, .	4.7	1

#	Article	IF	CITATIONS
55	Bouncing and cyclic quantum primordial universes and the ordering problem. Classical and Quantum Gravity, 2020, 37, 105005.	4.0	1
56	Impact of inhomogeneities on slowly rolling quintessence: implications for the local variations of the fine-structure constant. Classical and Quantum Gravity, 2021, 38, 175010.	4.0	1
57	Introducing quantum effects in classical theories. International Journal of Modern Physics A, 2016, 31, 1641008.	1.5	O
58	Does the cosmological constant stay hidden?. Physical Review D, 2020, 102, .	4.7	0
59	Rastallâ \in^{TM} s theory of gravity: spherically symmetric solutions and the stability problem. General Relativity and Gravitation, 2021, 53, 1.	2.0	0