Tri-Rung Yew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9363322/publications.pdf

Version: 2024-02-01

51	811	17 h-index	28
papers	citations		g-index
51	51	51	1427
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mechanism and Equivalent Circuit Model of Multielement Metal-Oxide Thin-Film Photodetectors. ACS Applied Electronic Materials, 2022, 4, 424-431.	4.3	1
2	Manganese Copper Ferrite Thin Films for Visible–Nearâ€Infrared Region Photodetector Applications. Physica Status Solidi - Rapid Research Letters, 2022, 16, .	2.4	4
3	Photoactive Copper-Doped Zinc Stannate Thin Films for Ultraviolet–Visible Light Photodetector. Journal of Electronic Materials, 2022, 51, 4884-4895.	2.2	2
4	In-situ monitoring the effect of acoustic vibration in the form of music on the motility of Escherichia coli. Applied Acoustics, 2021, 172, 107620.	3.3	3
5	Effect of Different Electrolytes on MnO ₂ Anodes in Lithium-lon Batteries. Journal of Physical Chemistry C, 2021, 125, 1221-1233.	3.1	13
6	A Sensitive Visible Light Photodetector Using Cobalt-Doped Zinc Ferrite Oxide Thin Films. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6411-6420.	8.0	29
7	Novel Cu–Mg–Ni–Zn–Mn oxide thin film electrodes for NIR photodetector applications. Journal of Materials Chemistry C, 2021, 9, 4961-4970.	5.5	6
8	Tin-manganese-nickel oxide thin films prepared by thermal evaporation for photosensor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115126.	3. 5	5
9	Investigation on the Voltage Hysteresis of Mn ₃ O ₄ for Lithium-Ion Battery Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 570-579.	8.0	26
10	A 3D-CNT micro-electrode array for zebrafish ECG study including directionality measurement and drug test. Biocybernetics and Biomedical Engineering, 2020, 40, 701-708.	5.9	3
11	Cu 0.78 Sn 0.12 Mn 0.1 O x Thin Films as a Photocatalytic Material under Visible Light. ChemistrySelect, 2019, 4, 9844-9848.	1.5	O
12	Cobalt Tungsten Oxide Thin Films Prepared by RFâ€Sputter for Photosensor. Advanced Materials Interfaces, 2017, 4, 1601165.	3.7	7
13	Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording. Analyst, The, 2016, 141, 279-284.	3.5	12
14	Stable water layers on solid surfaces. Physical Chemistry Chemical Physics, 2016, 18, 5905-5909.	2.8	2
15	Direct-Writing of Cu Nano-Patterns with an Electron Beam. Microscopy and Microanalysis, 2015, 21, 1639-1643.	0.4	4
16	Non-stoichiometric W ₁₈ O _{49â^x} S _x nanowires for wide spectrum photosensors with high internal gain. Nanoscale, 2015, 7, 901-907.	5.6	11
17	Tunable band gaps of Co _{3â^'x} Cu _x O ₄ nanorods with various Cu doping concentrations. RSC Advances, 2014, 4, 20053-20057.	3. 6	26
18	Electron beam manipulation of gold nanoparticles external to the beam. RSC Advances, 2014, 4, 31652.	3.6	19

#	Article	IF	Citations
19	Carbon nanotubes for highly sensitive colorimetric immunoassay biosensor. Journal of Materials Chemistry B, 2013, 1, 5389.	5.8	10
20	Low Resistivity Tin-Doped Copper Nanowires. IEEE Electron Device Letters, 2013, 34, 529-531.	3.9	0
21	ZnO-based one diode-one resistor device structure for crossbar memory applications. Applied Physics Letters, 2012, 100, 153503.	3.3	67
22	Polycrystalline ZnO Mott-barrier diodes. Applied Physics Letters, 2012, 101, 173509.	3.3	5
23	Quantitative Characterization of Nanoparticles in Blood by Transmission Electron Microscopy with a Window-Type Microchip Nanopipet. Analytical Chemistry, 2012, 84, 6312-6316.	6.5	24
24	A quantum dot-based optical immunosensor for human serum albumin detection. Biosensors and Bioelectronics, 2012, 34, 286-290.	10.1	62
25	Crystallization behaviors of an ultra-thin Ga–Sb film. CrystEngComm, 2011, 13, 5642.	2.6	14
26	Solution-processed all-oxide nanostructures for heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 17646.	6.7	19
27	The use of Ga16Sb84 alloy for electronic phase-change memory. Scripta Materialia, 2011, 64, 801-804.	5. 2	20
28	Phase stability, bonding and electrical conduction of amorphous carbon-added Sb films. Scripta Materialia, 2011, 65, 950-953.	5,2	14
29	Electrical impedimetric biosensors for liver function detection. Biosensors and Bioelectronics, 2011, 28, 368-372.	10.1	41
30	A Solution-Processed Air-Stable Perylene Diimide Derivative for N-type Organic Thin Film Transistors. ChemPhysChem, 2011, 12, 871-877.	2.1	8
31	A cone-shaped 3D carbon nanotube probe for neural recording. Biosensors and Bioelectronics, 2010, 26, 220-227.	10.1	39
32	Flexible UVâ€Ozoneâ€Modified Carbon Nanotube Electrodes for Neuronal Recording. Advanced Materials, 2010, 22, 2177-2181.	21.0	34
33	Phase transformation in Mg–Sb thin films. Thin Solid Films, 2010, 518, 7403-7406.	1.8	16
34	Improving the adhesion of carbon nanotubes to a substrate using microwave treatment. Carbon, 2010, 48, 805-812.	10.3	51
35	Crystallization kinetics of amorphous Ga-Sb films extended for phase-change memory. , 2010, , .		0
36	Interfacing Neurons both Extracellularly and Intracellularly Using Carbonâ^'Nanotube Probes with Long-Term Endurance. Langmuir, 2009, 25, 7718-7724.	3.5	22

#	Article	IF	Citations
37	Bacteria detection utilizing electrical conductivity. Biosensors and Bioelectronics, 2008, 23, 1856-1861.	10.1	38
38	Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab on A Chip, 2008, 8, 1915.	6.0	95
39	Solution-Processed Naphthalene Diimide Derivatives as n-Type Semiconductor Materials. Journal of Physical Chemistry C, 2008, 112, 1694-1699.	3.1	45
40	Growth of self-aligned carbon nanotube for use as a field-effect transistor using cobalt silicide as a catalyst. Carbon, 2007, 45, 1679-1685.	10.3	11
41	Polycrystalline \hat{I}^2 -SiC Film Growth on Si by ECR-CVD at 178 - $500\hat{A}^\circ$ C. Materials Research Society Symposia Proceedings, 1995 , 403 , 271 .	0.1	0
42	Diagnostic Techniques For Polycrystalline Thin Film Growth. Materials Research Society Symposia Proceedings, 1995, 406, 157.	0.1	0
43	Very Low Temperature Deposition of Polycrystalline Silicon Films with Micro-Meter-Order Grains on SiO2. Materials Research Society Symposia Proceedings, 1994, 355, 581.	0.1	0
44	Microcrystalline \hat{I}^2 -SiC Growth on Si by ECR-CVD at 500 \hat{A}° C. Materials Research Society Symposia Proceedings, 1994, 358, 799.	0.1	0
45	Novel Sulfur Treatment of SiO2 Surface for Poly Silicon Growth on SiO2/Si Structure. Materials Research Society Symposia Proceedings, 1993, 315, 125.	0.1	0
46	LOW-Temperature Epitaxial Growth of GaAs on Si Substrates by MBE. Materials Research Society Symposia Proceedings, 1992, 263, 125.	0.1	0
47	Surface Cleaning and Passivation for the Growth of Si/Oxide/Si Structures. Materials Research Society Symposia Proceedings, 1992, 259, 137.	0.1	3
48	Low Temperature Silicon Epitaxial Growth by Plasma Enhanced Chemical Vapor Deposition from SiH4/He/H2. Materials Research Society Symposia Proceedings, 1991, 236, 349.	0.1	0
49	Low Temperature Silicon Epitaxy Grown by Electron-Beam Evaporation in an Ultra-High Vacuum System. Materials Research Society Symposia Proceedings, 1991, 237, 555.	0.1	0
50	Material Characterization of Low-Temperature Silicon Epitaxial Growth on Patterned Oxidized Wafers by ULPCVD From SiH4/SiF4/H2. Materials Research Society Symposia Proceedings, 1990, 202, 389.	0.1	0
51	Structural Defects of Silicon Epitaxy and Epi/Substrate Interface Related to Improper In-Situ Surface Cleaning at Low Temperatures. Materials Research Society Symposia Proceedings, 1990, 202, 401.	0.1	0